首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim was to investigate the effects of three anatomical frames using palpable anatomical landmarks of the knee on the net knee joint moments. The femoral epicondyles, femoral condyles, and tibial ridges were used to define the different anatomical frames and the segment end points of the distal femur and proximal tibia, which represent the origin of the tibial coordinate system. Gait data were then collected using the calibrated anatomical system technique (CAST), and the external net knee joint moments in the sagittal, coronal, and transverse planes were calculated based upon the three anatomical frames. Peak knee moments were found to be significantly different in the sagittal plane by approximately 25% (p 相似文献   

2.
Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.  相似文献   

3.
4.
Moment arm of the patellar tendon in the human knee   总被引:5,自引:0,他引:5  
The moment arm of the knee-extensor mechanism is described by the moment arm of the patellar tendon calculated with respect to the screw axis of the tibia relative to the femur. The moment arm may be found once the line of action of the patellar tendon and the position and orientation of the screw axis are known. In this study, the orientation of the patellar tendon and the position and orientation of the finite screw axis of the tibia relative to the femur were calculated from measurements of the three-dimensional positions of the bones obtained from fresh cadaver specimens. Peak values of the patellar tendon moment arm ranged from 4-6 cm for the six knees tested; the moment arm was maximum near 45 degrees of knee flexion. The moment arm of the patellar tendon was nearly equal to the shortest (perpendicular) distance between the line of action of the patellar tendon and the axis of rotation of the knee at all flexion angles, except near full extension. Near full extension, the angle between the patellar tendon and the screw axis was significantly less than 90 degrees, and the magnitude of the moment arm was then less than the perpendicular distance between these two lines. The patellar tendon moment arm remained roughly constant across individuals when normalized by femoral condyle width, suggesting that anatomical differences play a large role in determining the moment arm of the extensor mechanism.  相似文献   

5.
Because the hand is a complex poly-articular limb, numerous methods have been proposed to investigate its kinematics therefore complicating the comparison between studies and the methodological choices. With the objective of overcoming such issues, the present study compared the effect of three local frame definitions on local axis orientations and joint angles of the fingers and the wrist. Three local frames were implemented for each segment. The “Reference” frames were aligned with global axes during a static neutral posture. The “Landmark” frames were computed using palpated bony landmarks. The “Functional” frames included a flexion–extension axis estimated during functional movements. These definitions were compared with regard to the deviations between obtained local segment axes and the evolution of joint (Cardan) angles during two test motions. Each definition resulted in specific local frame orientations with deviations of 15° in average for a given local axis. Interestingly, these deviations produced only slight differences (below 7°) regarding flexion–extension Cardan angles indicating that there is no preferred method when only interested in finger flexion–extension movements. In this case, the Reference method was the easiest to implement, but did not provide physiological results for the thumb. Using the Functional frames reduced the kinematic cross-talk on the secondary and tertiary Cardan angles by up to 20° indicating that the Functional definition is useful when investigating complex three-dimensional movements. Globally, the Landmark definition provides valuable results and, contrary to the other definitions, is applicable for finger deformities or compromised joint rotations.  相似文献   

6.
Definition of anatomical reference frames is necessary both for in vitro biomechanical testing, and for in vivo human movement analyses. Different reference frames have been proposed in the literature for the lower limb, and in particular for the tibia–fibula complex. The scope of this work was to compare the three most commonly referred proposals (proposed by [Ruff, C.B., Hayes, W.C., 1983. Cross-sectional geometry at Pecos Pueblo femora and tibiae —A biomechanical investigation: I. method and general patterns of variation. American Journal of Physical Anthropology 60, pp. 359–381.], by [Cappozzo, A., Catani, F., Della Croce, U., Leardini, A., 1995. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clinical Biomechanics (Bristol, Avon) 10, pp. 171–178.], and by the Standardization and Terminology Committee of the International Society of Biomechanics, [Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D'Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I., 2002. ISB recommendation on definitions of joint coordinate system of various joints for reporting of human joint motion—part I: ankle, hip and spine. International Society of Biomechanics. Journal of Biomechanics 35, pp. 543–548.]). These three frames were identified on six cadaveric tibia–fibula specimens based on the relevant anatomical landmarks, using a high-precision digitizer. The intra-operator (ten repetitions) and inter-operator (three operators) repeatability were investigated in terms of reference frame orientation. The three frames had similar intra-operator repeatability. The reference frame proposed by Ruff et al. had a better inter-operator repeatability (this must be put in relation with the original context of interest, i.e. in vitro measurements on dissected bones). The reference frames proposed by Ruff et al. and by ISB had a similar alignment; the frame proposed by Cappozzo et al. was considerably externally rotated and flexed with respect to the other two. Thus, the reference frame proposed by Ruff et al. is preferable when the full bone surface is accessible (typically during in vitro tests). Conversely, no advantage in terms of repeatability seems to exist between the reference frames proposed by Cappozzo et al. and ISB.  相似文献   

7.
8.
Magnetic and Inertial measurement units (MIMUs) have become exceedingly popular for ambulatory human motion analysis during the past two decades. However, measuring anatomically meaningful segment and joint kinematics requires virtual alignment of the MIMU frame with the anatomical frame of its corresponding segment. Therefore, this paper presents a simple calibration procedure, based on MIMU readouts, to align the inertial frame of the MIMU with the anatomical frames, as recommended by ISB. The proposed calibration includes five seconds of quiet standing in a neutral posture followed by ten consecutive hip flexions/extensions. This procedure will independently calibrate MIMUs attached to the pelvis, thigh, shank, and foot. The accuracy and repeatability of the calibration procedure and the 3D joint angle estimation were validated against the gold standard motion capture system by an experimental study with ten able-bodied participants. The procedure showed high test-retest repeatability in aligning the MIMU frame with its corresponding anatomical frame, i.e., the helical angle between the MIMU and anatomical frames did not significantly differ between the test and retest sessions (except for thigh MIMU). Compared to previously introduced procedures, this procedure attained the highest inter-participant repeatability (inter-participant coefficient of variations of the helical angle: 20.5–42.2%). Further, the proposed calibration would reduce the offset errors of the 3D joint angle estimation (up to 12.8 degrees on average) compared to joint angle estimation without calibration (up to 26.3 degrees on average). The proposed calibration enables MIMU to measure clinically meaningful gait kinematics.  相似文献   

9.
Prediction of the loading along the leg during snow skiing.   总被引:1,自引:0,他引:1  
The complete force and moment of each cross section of the leg between the ski boot top and the knee during normal skiing were predicted from measurements of the force and moment under the toe and heel of the boot and the flexion of the ankle. The force and moment components predicted at the base of the boot were significantly different from those predicted at sites of potential injury at the boot top and the knee. The maximum torsional and maximum varus-valgus moments predicted at the knee over all subjects tested were 70 Nm and 149 Nm, which are within the estimated range of the ultimate strength of the knee without support from contracted muscles crossing the knee. Regression analyses were used to find the force components at the base of the boot that best predict the bending and torsional moments at the boot top and knee. The torsional moments at the boot top and knee are best predicted by the medial-lateral force at the toe. The varus-valgus moment at the boot top and knee are best predicted by the resultant medial-lateral force component at the base of the boot. The set of best predictors of the anterior-posterior bending moments at the boot top and knee includes the vertical force at the toe, the vertical force at the heel and the component of the total vertical force directed perpendicular to the leg.  相似文献   

10.

Objective

Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles.

Methods

Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System.

Results

There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames.

Conclusion

The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.  相似文献   

11.
The differences between the assessments performed with and without the point cluster technique (PCT) for knee joint motions during the high-risk movements associated with non-contact anterior cruciate ligament (ACL) injuries have not been reported. This study aims to examine the differences between PCT and non-PCT assessments for knee joint angles and moments during shuttle run cutting. Fourteen high school athletes performed a maximal effort shuttle run cutting task. Motion data were collected by an 8-camera motion analysis system at 200 Hz, and ground reaction force data were recorded using a force plate at 1000 Hz. In both PCT and non-PCT approaches, the knee joint angles were calculated using Euler angle rotations, and the knee joint moments were obtained by solving the Newton-Euler equations using an inverse dynamics technique. For the extension/flexion angle, good agreement was measured between PCT and non-PCT assessments. The abduction angle obtained in the non-PCT assessment was smaller than that obtained with the PCT. An internal rotation angle was obtained in the PCT assessment, whereas a small external rotation angle was obtained in the non-PCT assessment. For the knee joint moments, good agreement between PCT and non-PCT assessments was observed for all the components. The differences in the knee joint angles were attributed in part to the differences in the position of the medial femoral epicondyle. The results suggest that the ACL injury risk during shuttle run cutting is estimated lower in the non-PCT assessment than in the PCT assessment.  相似文献   

12.
Joint moments help us understand joint loading and muscle function during movement. However, the interpretation depends on the choice of reference frame, but the different reference frames have not been compared in dynamic, high-impact sporting movements. We have compared the magnitude and the resulting ranking of hip and knee joint moments expressed in the laboratory coordinate system, the local system of the distal segment and projected or decomposed to the Joint Coordinate System (JCS) axes. Hip and knee joint moments of drop jumps and sidestep cutting in 70 elite female handball players were calculated based on recordings from an eight-camera 240 Hz system and two force platforms and expressed with the four methods. The greatest variations in magnitude between conditions were seen for drop jump hip internal rotation (range: 0.31–0.71 Nm/kg) and sidestep cutting knee flexion (2.87–3.39 Nm/kg) and hip internal rotation (0.87–2.36 Nm/kg) and knee internal rotation (0.10–0.40 Nm/kg) moments. The rank correlations were highest between conditions for flexion moments (0.88–1.00) and sidestep cutting abduction moments (0.71–0.98). The rank correlations ranged from 0.64 to 0.73 for drop jump knee abduction moments and between −0.17 and 0.67 for hip and knee internal rotation moments. Expression of joint moments in different reference systems affects the magnitude and ranking of athletes. This lack of consistency may complicate the comparison and combination of results. Projection to the JCS is the only method where joint moments correspond to muscle and ligament loading. More widespread adoption of this convention could facilitate comparison of studies and ease the interpretation of results.  相似文献   

13.
Despite the availability of the International Society of Biomechanics (ISB) recommendations for the orientation of anatomical frames, no consensus exists about motion representations related to finger kinematics. This paper proposes novel anatomical frames for motion representation of the phalangeal segments of the long fingers. A three-dimensional model of a human forefinger was acquired from a non-pathological fresh-frozen hand. Medical imaging was used to collect phalangeal discrete positions. Data processing was performed using a customized software interface (“lhpFusionBox”) to create a specimen-specific model and to reconstruct the discrete motion path. Five examiners virtually palpated two sets of landmarks. These markers were then used to build anatomical frames following two methods: a reference method following ISB recommendations and a newly-developed method based on the mean helical axis (HA). Motion representations were obtained and compared between examiners. Virtual palpation precision was around 1 mm, which is comparable to results from the literature. The comparison of the two methods showed that the helical axis method seemed more reproducible between examiners especially for secondary, or accessory, motions. Computed Root Mean Square distances comparing methods showed that the ISB method displayed a variability 10 times higher than the HA method. The HA method seems to be suitable for finger motion representation using discrete positions from medical imaging. Further investigations are required before being able to use the methodology with continuous tracking of markers set on the subject?s hand.  相似文献   

14.
Hanson RM  Kohler D  Braun SG 《Proteins》2011,79(7):2172-2180
We describe here definitions of "local helical axis" and "straightness" that are developed using a simple quaternion-based analysis of protein structure without resort to least-squares fitting. As part of this analysis, it is shown how quaternion differences can be visualized to depict accurately the local helical axis relating any two adjacent amino acid residues in standard, nonidealized proteins. Three different options for the definition of amino acid residue orientation in terms of quaternion frames are described. Two of these, the "C(α) frame" and the "P frame," are shown to be correlated strongly with a simple approximate measure derived solely from Ramachandran angles. The relationship between quaternion-based straightness and recognized DSSP-derived secondary structure motifs is discussed.  相似文献   

15.
This paper compares geometry-based knee axes of rotation (transepicondylar axis and geometric center axis) and motion-based functional knee axes of rotation (fAoR). Two algorithms are evaluated to calculate fAoRs: Gamage and Lasenby's sphere fitting algorithm (GL) and Ehrig et al.'s axis transformation algorithm (SARA). Calculations are based on 3D motion data acquired during isokinetic dynamometry. AoRs are validated with the equivalent axis based on static MR-images. We quantified the difference in orientation between two knee axes of rotation as the angle between the projection of the axes in the transversal and frontal planes, and the difference in location as the distance between the intersection points of the axes with the sagittal plane. Maximum differences between fAoRs resulting from GL and SARA were 5.7° and 15.4mm, respectively. Maximum differences between fAoRs resulting from GL or SARA and the equivalent axis were 5.4°/11.5mm and 8.6°/12.8mm, respectively. Differences between geometry-based axes and EA are larger than differences between fAoR and EA both in orientation (maximum 10.6°).and location (maximum 20.8mm). Knee joint angle trajectories and the corresponding accelerations for the different knee axes of rotation were estimated using Kalman smoothing. For the joint angles, the maximum RMS difference with the MRI-based equivalent axis, which was used as a reference, was 3°. For the knee joint accelerations, the maximum RMS difference with the equivalent axis was 20°/s(2). Functional knee axes of rotation describe knee motion better than geometry-based axes. GL performs better than SARA for calculations based on experimental dynamometry.  相似文献   

16.
When performing radiostereometric analysis (RSA), computed tomography scans are often taken to obtain the landmarks used to create anatomical coordinate systems (CSs) for quantifying joint kinematics. Different conventions for defining CSs lead to an inability to compare results among studies. The International Society of Biomechanics (ISB) has proposed a set of CSs; however, the landmarks needed to create the recommended scapular CS require the entire scapula to be scanned, thereby also exposing breast and other tissues to radiation. The main purpose of this work was to investigate an alternate definition of the CS that has repeatably attainable landmarks and axes as close as possible to those recommended by the ISB, while limiting the portion of the scapula requiring scanning. Intra- and inter-investigator variabilities of landmark digitization were quantified in one model of a scapula and one cadaveric specimen. Based on the variability of the digitizations, an alternative CS was defined. The differences between the ISB and alternative CSs were evaluated on 11 cadaveric specimens. Beaded biplanar RSA was performed on the glenohumeral joint model in 15 different configurations and the resulting kinematics were calculated for each set of landmark digitizations using both sets of coordinate systems. While the kinematic angles obtained using the alternative CS were statistically different from those obtained using the ISB standard, these differences were small (on the order of 5°) and therefore considered to be of little clinical significance. In all likelihood, the benefits of decreasing radiation exposure outweigh these differences in angles.  相似文献   

17.
Although the interpretability and reliability of joint kinematics depends strongly on the accuracy and precision of determining the anatomical frame (AF) orientation, the exact dependency of joint angle error on AF misalignment is still not clear. To fully understand the behavior, this study uses linear perturbations to quantify joint angle error due to known modifications of the AFs, where the joint angles are calculated according to the Cardanic convention. The result is a functional representation of joint angle error with dependence on nominal joint angles and on the orientations of the alternative AFs relative to the nominal AFs. The results are validated using numerical analysis on knee joint angle data during walking. The derived relationship elucidates results from previous work studying this effect and allows AF differences to be inferred by joint angle curves when multiple sets of joint angle curves are collected simultaneously.  相似文献   

18.
Measurements of hip kinematics inherently depend on the coordinate system in which they are derived, yet the effect of the coordinate system definition on calculations of hip angles is not well-understood. Herein, hip angles calculated during dynamic activities were compared using coordinate systems described in the literature. In-vivo kinematic data of 24 participants (13 males) were analyzed during gait and the anterior impingement test using dual fluoroscopy and model-based tracking. Two coordinate systems for the pelvis (anterior pelvic plane, International Society of Biomechanics [ISB]) and three coordinate systems for the femur (table top plane with two definitions of the superior-inferior axis, ISB) were evaluated. Bony landmarks visible on computed tomography (CT) images were identified to establish each coordinate system and used as the basis to calculate differences in hip angles between coordinate system pairs. In the analysis during gait, the maximum differences derived from various coordinate system definitions were 6.7° ± 5.5° for flexion, 7.7° ± 2.1° for rotation, and 5.5° ± 0.7° for adduction. For the anterior impingement test, the differences were 8.1° ± 5.9°, 7.1° ± 1.2°, and 5.3° ± 0.7°, respectively. Landmark-based analysis using CT images could estimate these dynamic differences with errors less than 1.0°. Our results indicate that hip angles can be accurately transformed to angles calculated in different coordinate systems by accounting for the inherent bony anatomy. This information may aid in the interpretation of results across biomechanical studies of the hip.  相似文献   

19.
Medio-lateral translation during knee flexion continues to raise controversy. Small population sizes, small joint flexion ranges, less-reliable measurement techniques and disparate experimental conditions led to inconsistent reports in the past. To study this subject with more accurate and reliable measurements, we carried out femur and tibia tracking in 22 intact cadaver knees during passive joint motion using a state-of-the-art surgical navigation system. Trackers with active light-emitting diodes were fixed onto the femur and tibia, and an instrumented pointer was used to digitize a number of anatomical landmarks. International recommendations were adopted for anatomical-based reference frame definitions and joint kinematic analysis. For the first time, knee joint translations were reported in both the femoral and tibial reference frames, and over a flexion/extension arc as large as 140°. During flexion, in the femoral reference frame, the center of the tibial plateau moved 4.8 ± 2.8mm medially when averaged over the specimens. In the tibial frame, the knee center moved 13.3 ± 5.7 mm laterally. The relative femoral-to-tibial medio-lateral translation was, on average over the specimens, nearly 20% of the width of the tibial plateau, and can be as large as 35%. Medio-lateral translation occurs in the natural normal knee joint.  相似文献   

20.
When studying the biomechanics of a transient turn, the orientation of the body will change relative to the orientation of the force plates over the progression of the turn. To express ground reaction forces relative to the body, this study investigated possible origin locations and axis alignments of body reference frames. The gait patterns of 10 subjects were recorded as subjects negotiated a 90 degrees hallway corner. Body reference frames were chosen whose origins were the center of mass (COM) and the pelvis origin (PEL). A finite-difference method was used to align the axes of the reference frames according to the horizontal paths of the COM and PEL. The ground reaction impulses (GRIs) were calculated relative to the COM and PEL reference frames. GRI differences were small between the PEL and COM frames, suggesting that either is acceptable for turning studies. Based on an investigation of finite-difference parameters, the COM frame should be used when using a kinematic sampling rate of 60 Hz. Either frame is acceptable when sampling at higher rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号