首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
A specific and sensitive high-performance liquid chromatographic (HPLC) method with photodiode-array (PDA) ultraviolet detection was developed for the simultaneous determination of three bioactive constituents of Cedrus deodara namely wikstromol, matairesinol and dibenzylbutyrolactol in mouse plasma. In solid-phase extraction (SPE) these constituents were successfully separated using a C18 column by isocratic elution using acetonitrile:water containing hexanesulphonic acid, 32:68 (v/v). The flow rate was set at 1ml/min and detector wavelength at 225nm. Good linearity (r2>0.999) was observed over the studied range of 0.015-5.0microg/ml for wikstromol and 0.030-5.0microg/ml for matairesinol and dibenzylbutyrolactol. The CV values of intra-day precision for wikstromol, matairesinol and dibenzylbutyrolactol were in between 1.8-6.9, 1.7-4.9 and 1.6-4.2% and values of inter-day precision were in between 10.4-12.2, 9.7-11 and 10-11.2%, respectively. The extraction recoveries at low to high concentration were greater than 98, 83 and 87% for each analyte, respectively. The LOQ for wikstromol was 0.015microg/ml and for both matairesinol and dibenzylbutyrolactol it was 0.030microg/ml. The developed method was used to determine the pharmacokinetics of the three analytes in mice after intraperitoneal administration of CD-3.  相似文献   

2.
A method based on solid-phase extraction (SPE) and capillary zone electrophoresis (CZE) for the analysis of tobramycin in human serum is presented. An off-line SPE employing a carboxypropyl bonded phase (CBA) cartridge was used for the extraction of tobramycin from human serum. Adsorbed tobramycin was eluted from the CBA cartridge using a mixture of NH(3) (25%, w/v)-methanol (30:70, v/v). After evaporation, the analyte was reconstituted and derivatized with o-phthaldialdehyde (OPA)/3-mercaptopropionic acid (MPA). The resulting tobramycin-OPA/MPA derivative was purified, and then identified by mass spectrometry. The tobramycin-OPA/MPA derivative was then analysed by CZE with a background electrolyte (BGE) comprising of 30 mM sodium tetraborate pH 10.0-acetonitrile (ACN) (80:20, v/v) with ultraviolet detection at 230 nm. A linear response was observed in the range of 0.3-30 microg/ml with r(2) = 0.992. The sensitivity of the method was determined by its limit of quantitation (LOQ) and limit of detection (LOD) of 0.3 microg/ml and 0.1 microg/ml, respectively. SPE recovery ranged from 68 to 79% at the trough levels to 98% at the peak levels found in serum. Furosemide has been added as internal standard (IS) to improve precision. For the therapeutic range of tobramycin in serum (2-10 microg/ml) the relative standard deviation (R.S.D.) was less than 11% for the entire SPE/CE process. The method demonstrated excellent selectivity as shown by the lack of interference from a total of 20 drugs investigated. The method was then used in therapeutic drug monitoring of patients receiving the drug.  相似文献   

3.
Liquid chromatographic assay for dicloxacillin in plasma   总被引:2,自引:0,他引:2  
A simple high-performance liquid chromatographic method for the determination of dicloxacillin in plasma has been developed. The method only requires 0.5 ml of plasma, phosphate buffer solution (pH = 4.7), acidification with 0.5N hydrochloride acid and liquid extraction with dichloromethane. Posterior evaporation of organic under nitrogen steam and redissolution in mobile phase is carried out. The analysis was performed on a Spherisorb C18 (5 microm) column, using methanol -0.05 M phosphate buffer, pH = 4.7 (75:25; v/v) as mobile phase, with ultraviolet detection at 220 nm. Results showed that the assay is sensitive: 0.5 microg/ml. The response is linear in the range of 0.5 - 10 microg/ml. Maximum inter-day coefficient of variation was 12.4%. Mean extraction recovery obtained was 96.95%. Stability studies showed that the loss was not higher than 10%, samples are stable at room temperature for 6 h, at -20 Celsius for 2 months, processed samples were stable at least for 24 h and also after two freeze-thaw cycles. The method has been used to perform pharmacokinetic and bioequivalence studies in humans.  相似文献   

4.
An isocratic liquid chromatographic method for direct sample injection has been developed for the quantitation of felbamate and four metabolites in rat cerebrospinal fluid. The method uses 0.050- or 0.025-ml aliquots of cerebrospinal fluid diluted with equal volumes of internal standard. Chromatography is performed on a 150 mm × 4.6 mm I.D. Spherisorb ODS2, 3-μm HPLC column eluted with a phosphate buffer—acetonitrile—methanol (820:120:60, v/v/v) mobile phase and ultraviolet absorbance detection at 210 nm. The linear quantitation ranges are: felbamate and the 2-hydroxy metabolite 0.195–200 μg/ml, the propionic acid metabolite 0.195–50.0 μg/ml, the p-hydroxy metabolite 0.781 to 50.0 μg/ml, and the monocarbamate metabolite 0.098–50.0 μg/ml.  相似文献   

5.
Sensitive and selective determination of valproic acid in plasma by high-performance liquid chromatography (HPLC) is usually achieved with pre-column derivatization. In the present work, the derivatization is omitted due to using a simple but highly selective plasma extraction procedure and an optimized chromatographic condition. Valproic acid and the internal standard octanoic acid were extracted from plasma samples with n-hexane under acidic condition followed by back-extraction into diluted triethylamine. Chromatography was performed on a CN column (250 x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-40 mM aqueous sodium dihydrogen phosphate (30:70, v/v), pH 3.5. Detection was made at 210 nm and analyses were run at a flow-rate of 1 ml/min. The method was specific and sensitive with a quantification limit of 1.25 microg/ml and a detection limit of 0.1 microg/ml in plasma. The mean absolute recovery for valproic acid using the present plasma extraction procedure was 75.8%. The intra- and inter-day coefficient of variation and percent error values of the assay method were all in acceptable range. Calibration curves were linear (r>0.999) from 1.25 to 320 microg/ml in plasma.  相似文献   

6.
A selective and sensitive high performance liquid chromatography-electrospray ionisation-mass spectrometry method has been developed for the determination of balofloxacin (BLFX) in human plasma. The sample preparation was a liquid-liquid extraction, and chromatographic separation was achieved with an Agilent ZORBAX 300SB C18 2.1 mm x 150 mm column using a mobile phase comprised of methanol-water (10 mM CH(3)COONH(4), pH 3.0)=40:60 (v/v). Standard curves were linear (r=0.9992) over the concentration range of 0.03-3 microg/ml and had good accuracy and precision. The within- and between-batch precisions were within 10% relative standard deviation (R.S.D.). The limit of detection (LOD) was 0.02 microg/ml. The validated HPLC-electrospray ionization (ESI)-MS method has been used successfully to study balofloxacin pharmacokinetics in healthy volunteers.  相似文献   

7.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed for the simultaneous determination of amiodarone and desethylamiodarone in human plasma. After the addition of the internal standard tamoxifen, plasma samples were extracted using Oasis MCX solid-phase extraction cartridges. The compounds were separated on a 5 microm Symmetry C18 (Waters) column (150 x 3.0 mm, internal diameter) with a mobile phase of acetonitrile-0.1% forrmic acid (46:54, v/v) at a flow-rate of 0.5 ml/min. The overall extraction efficiency was more than 89% for both compounds. The assay was sensitive down to 1 microg/l for amiodarone and down to 0.5 microg/l for desethylamiodarone. Within-run accuracies for quality-control samples were between 95 and 108% of the target concentration, with coefficients of variation <8%. The proposed method enables the unambiguous identification and quantitation of amiodarone and desethylamiodarone in both clinical and forensic specimens.  相似文献   

8.
Iodixanol is a widely used iso-osmolar contrast medium agent. Similar to iohexol, it can also be a good exogenous marker for the measurement of glomerular filtration rate (GFR). This article describes the development and validation of an HPLC-UV method for quantification of iodixanol in human plasma. Internal standard, iohexol (20 microl, 1 mg/ml), and perchloric acid (30 microl, 20%, v/v) were added to plasma samples (300 microl), followed by neutralization with 10 microl potassium carbonate (5M). Samples were centrifuged and 10 microl of the supernatant was injected onto a C(18) EPS analytical column (3 microm particle size, 150 mm x 4.6 mm). The extraction method yielded >95% recovery for both iodixanol and iohexol. The mobile phase consisted of 0.1% (w/v) sodium formate buffer and acetonitrile. Iohexol and iodixanol peaks were eluted at approximately 5 and 9 min, respectively using a fast gradient method. The assay lower limit of detection was 2.0 microg/ml and lower limit of quantification was 10 microg/ml. The calibration curves, assessed in six replicates, were linear over an iodixanol concentration range of 10-750 microg/ml. Intra- and inter-day accuracy was >95% and precision expressed as % coefficient of variation was <10%. This method is simple, accurate, precise and robust and can potentially be used for iodixanol quantification in large-scale clinical studies.  相似文献   

9.
20 (R,S)-Ginsenoside-Rg2, an anti-shock agent, is prescribed as a racemate. To analyze simultaneously the enantiomers of 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2 in plasma, a simple and reproducible high-performance liquid chromatographic (HPLC) method has been developed. The enantiomeric separation and determination were successfully achieved using a Diamonsil ODS C18 reversed-phase column (5 microm, 250 mm x 4.6 mm) with an RP18 (5 microm) guard column and a mobile phase of MeOH-aq. 4% H3PO4 (65:35, v/v, pH 5.1) with UV detection at 203 nm. Both enantiomers, 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2, were well separated at 14.5 min and 13.6 min, respectively. The linear ranges of the standard curves were 2.0-250 microg/ml. The intra- and inter-day precision (R.S.D.) were 相似文献   

10.
A simple, rapid and sensitive high-performance liquid chromatographic method was developed for determination of ibuprofen, (+/-)-(R, S)-2-(4-isobutylphenyl)-propionic acid, enantiomers in rat serum. Serum (0.1 ml) was extracted with 2,2,4-trimethylpentane/isopropanol (95:5, v/v) after addition of the internal standard, (S)-naproxen, and acidification with H(2)SO(4). Enantiomeric resolution of ibuprofen was achieved on ChiralPak AD-RH column with ultraviolet (UV) detection at 220 nm without interference from endogenous co-extracted solutes. The calibration curve demonstrated excellent linearity between 0.1 and 50 microg/ml for each enantiomer. The mean extraction efficiency was >92%. Precision of the assay was within 11% (relative standard deviation (R.S.D.)) and bias of the assay was lower than 15% at the limit of quantitation (0.1 microg/ml). The assay was applied successfully to an oral pharmacokinetic study of ibuprofen in rats.  相似文献   

11.
Recently a novel class of non-competitive AMPA receptor (AMPAR) antagonists, such as, N-acetyl-1-(p-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (PS3Ac) have been developed using molecular modeling studies. In this study we present a validated method for detecting PS3Ac in biological matrices by high performance liquid chromatography with ultraviolet detection. In this study PS3Ac was administered to Wistar rats. After intraperitoneal administration, the plasma concentrations of PS3Ac and its potential metabolic products, i.e., PS3OH, PS3 and PS3OHAc were determined. Serum samples (0.5 ml) were purified by solid-phase extraction of analytes using Oasis cartridges. The chromatographic separation was performed on a LiChrosorb RP-1 at 30 degrees C. The eluent was made of potassium dihydrogen phosphate/acetonitrile in ratio of 50:50 (v/v); the flow rate was 1 ml/min. The detection was performed at 220 nm. The method exhibited a large linear range from 0.05 to 5 microg/ml for all studied compounds. The intra-assay accuracy ranged from 92% determined at 0.1 microg/ml of PS3OH, to 108% determined at 0.05 microg/ml of PS3OHAc. The average coefficient of variation of inter-assay was 6.27%. The average recovery from plasma was 78.5%. The limits of quantification for all the tetrahydroisoquinoline derivatives was 20 ng. The method proved to be highly sensitive and specific for the determination of the studied compounds in rat plasma and has been successfully applied to the evaluation of the pharmacokinetic profile of the inoculated compound.  相似文献   

12.
A simple, sensitive and reproducible method was developed for the determination of lamotrigine in whole blood with on-line solid phase extraction followed by HPLC separation with UV detection. Whole blood samples were diluted 1:1 with water and then injected directly on a clean-up column dry-packed with 40microm C8 silica and separated on a C18 reversed-phase column (150x4.6mm) at room temperature. The extraction column was activated with methanol and conditioned with phosphate buffer of pH 4.5. Mobile phases consisted of phosphate buffer of pH 4.5 for the extraction column and of phosphate buffer of pH 4.5 - acetonitrile (60:40, v/v) for the analytical column. At a flow rate of 1.0ml/min and a connection time of 1.0min, the complete cycle time was 10.0min. Detection was carried out at 260nm. No internal standard was necessary. The method was linear over concentration range 0.2-20.0microg/ml for lamotrigine. Recovery was 98%. Within-day and between-day coefficients of variation ranged from 1.8 to 6.7%.  相似文献   

13.
A sensitive reversed-phase high-performance liquid chromatographic (RP-HPLC) assay with on-line extraction was developed for quantifying ertapenem in human cerebrospinal fluid (CSF). This assay is at least five times more sensitive than previously published ertapenem methods with a lower limit of quantitation at 0.025 microg/ml. In this assay, a CSF sample is extracted on-line using a RP extraction column and an aqueous acidic mobile phase (0.1% formic acid) to wash away polar endogenous materials, while ertapenem is retained on the column. Ertapenem is then back-flushed off the extraction column and directed to a RP analytical column using an acidic mobile phase with an organic modifier (acetonitrile/0.1% formic acid, 15:85 (v/v)) and detected using UV absorbance. The acidic mobile phase provided a sharper chromatographic peak and on-line extraction allowed large injection volumes (> or = 150 microl) of buffered CSF to be injected without compromising column integrity. These assay conditions were necessary to quantify ertapenem at levels expected to be found in human CSF (< 0.05 microg/ml). The method was successfully validated and implemented for a clinical study: intraday precision and accuracy of the CSF assay for calibration standards (0.025-10 microg/ml) and quality control samples (0.1, 0.5, and 2.5 microg/ml) were < 6.2% coefficient of variation and 96.8-104.0% of nominal concentration, respectively.  相似文献   

14.
A new simple method was developed for the quantitative determination of the docetaxel (Taxotere) vehicle, polysorbate 80 (Tween 80), in human plasma. Calibration curves were constructed in the range of 1-100 microg/ml, using paclitaxel (0.01 mM) as internal standard, and were analyzed using a power fit with equal weighting. Sample pretreatment involved a one-step extraction with acetonitrile-n-butyl chloride (1:4, v/v). The analytes were separated on a Waters X-Terra MS column (50x2.1 mm I.D.) packed with 3.5-microm ODS material, and eluted with methanol-water (9:1, v/v) containing 0.1% formic acid. The column effluent was monitored by tandem mass spectrometry with electrospray ionization. The overall extraction efficiency was 50-60%, with values for precision and accuracy of < or =16% and <15% relative error, respectively. Our current method is approximately 60-100-fold more sensitive than previous assays, and will be used to define Tween 80 disposition in patients receiving Taxotere.  相似文献   

15.
A high-performance liquid chromatographic method using liquid-liquid extraction was developed for the determination of 1-(3-fluoro-4-hydroxy-5-mercaptomethyl-tetrahydrofuran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione (l-FMAUS; I) in rat plasma and urine. A 100 microl aliquot of distilled water containing l-cysteine (100 mg/ml) was added to a 100 microl aliquot of biological sample. l-Cysteine was employed to protect binding between the 5'-thiol of I and protein in the biological sample. After vortex-mixing for 30s and adding a 50 microl aliquot of the mobile phase containing the internal standard (10 microg/ml of 3-aminophenyl sulfone), 1 ml of ethyl acetate was used for extraction. After vortex-mixing, centrifugation, and evaporating the ethyl acetate, the residue was reconstituted with a 100 microl aliquot of the mobile phase. A 50 microl aliquot was injected onto a C(18) reversed-phase column. The mobile phases, 50 mM KH(2)PO(4) (pH = 2.5):acetonitrile (85:15, v/v) for rat plasma and 50 mM KH(2)PO(4) (pH 2.5):acetonitrile:methanol (85:10:5, v/v/v) for urine samples, were run at a flow-rate of 1.2 ml/min. The column effluent was monitored by an ultraviolet detector set at 265 nm. The retention times for I and the internal standard were approximately 9.7 and 12.5 min, respectively, in plasma samples and the corresponding values in urine samples were 16.8 and 14.9 min. The quantitation limits of I in rat plasma and urine were 0.1 and 0.5 microg/ml, respectively.  相似文献   

16.
A method based on cloud-point extraction (CPE) was developed to determine arbidol in rat plasma by high performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as the extract solvent. Variable parameters affecting the CPE efficiency were evaluated and optimized. A Zorbax SB-C(18) column (4.6 mm i.d. x 150 mm, 5 microm particle size) was used for isocratic elution separation at 40 degrees C with detection wavelength at 316 nm. Under the optimum conditions, the method was shown to be reproducible and reliable with intraday precision below 6.6%, interday precision below 8.8%, accuracy within +/-5.0% and mean extraction recovery more than 89.7%, which were all calculated using a range of spiked samples at three concentrations of 0.2, 2 and 16 microg/ml for arbidol in plasma. The linear range was from 0.08 to 20 microg/ml. After strict validation, the method was successfully applied to the pharmacokinetic study of arbidol in rats after oral and intravenous administration, respectively.  相似文献   

17.
The method for separation and determination of dexamethasone sodium phosphate (DexP) in cochlear perilymph fluid (CPF) of cavy was developed using HPLC with ultraviolet (UV) monitoring and electrospray ionization/mass spectrometry (ESI/MS) identification. The quantitative determination of DexP in CPF was achieved by HPLC with UV detection at 245 nm. The separation was carried out on a Phenomenex ODS(3) column ( 250 mm x 4.6 mm i.d., 5 microm) with the mobile phase of acetonitrile-5mmol/l ammonium acetate (23:77 (v/v)) at a flow rate of 1.0 ml/min. DexP was baseline separated from the matrices of CPF blanks within 15 min. The linearity ranged from 0.5 to 50 microg/ml. The limit of detection was 0.10 microg/ml. The recovery ranged from 98.5 to 100.8%. The relative standard deviations (R.S.D.s) of intra- and inter-day peak area were between 0.7-1.3 and 1.2-3.5%, respectively. Both full scan MS and MS2 of DexP with positive and negative polarity were obtained and elucidated. The specific ions were chosen to characterize DexP in the CPF sample. Using the proposed HPLC-UV-ESI/MS method, the concentration of DexP in CPF samples after both vein and middle ear injections were determined, and the relationships between concentration and time were obtained. This method offered reference data for clinical investigation of DexP to cure ear diseases.  相似文献   

18.
A simple and sensitive HPLC method has been developed and validated for the determination of oridonin (ORI) in rabbit plasma. A simple liquid-liquid extraction (LLE) method was applied to extract ORI and the internal standard (IS), isopsoralen, from rabbit plasma. Chromatographic separation of ORI and the IS was achieved with a Kromasil C18 5-mum column (250 mm x 4.6 mm) using methanol-water (50:50, v/v) as mobile phase at a flow rate of 1 mL/min. The ultraviolet (UV) detection wavelength was set at 241 nm. The lower limit of quantification (LLOQ) was 0.02 microg/mL. The calibration curves were linear over a concentration range of 0.02-10 microg/mL. The assay accuracy and precision were within the range of 95.1-113.5% and 5.4-8.6%, respectively. This HPLC method was applied successfully to the pharmacokinetic study of ORI-loaded poly(caprolactone)-poly(ethylene oxide)-poly(caprolactone) copolymer nanoparticles (ORI-PCL-PEO-PCL-NP) in rabbits, given as a single intravenous injection at the dose equivalent to 2mg of ORI/kg, and the pharmacokinetic parameters for ORI were compared with a single intravenous injection of a ORI solution at the same dose.  相似文献   

19.
Simultaneous measurement of isoniazid and its main acetylated metabolite acetylisoniazid in human plasma is realized by high-performance liquid chromatography. The technique used is evaluated by a factorial design of validation that proved to be convenient for routine drug monitoring. Plasma samples are deproteinized by trichloroacetic acid and then the analytes are separated on a microBondapak C18 column (Waters). Nicotinamide is used as an internal standard. The mobile phase is 0.05 M ammonium acetate buffer (pH 6)-acetonitrile (99:1, v/v). The detection is by ultraviolet absorbance at 275 nm. The validation, using the factorial design allows one to: (a) test the systematic factors of bias (linearity and matrix effect); (b) estimate the relative standard deviations (RSDs) related to extraction, measure and sessions assay. The linearity is confirmed to be within a range of 0.5 to 8 microg/ml of isoniazid and 1 to 16 microg/ml of acetylisoniazid. This method shows a good repeatability for both extraction and measurement (RSD INH=3.54% and 3.32%; RSD Ac.INH=0.00% and 5.97%), as well as a good intermediate precision (RSD INH=7.96%; RSD Ac.INH=15.86%). The method is also selective in cases of polytherapy as many drugs are associated (rifampicin, ethambutol, pyrazinamide, streptomycin). The matrix effect (plasma vs. water) is negligible for INH (3%), but statistically significant for Ac.INH (11%). The application of this validation design gave us the possibility to set up an easy and suitable method for INH therapeutic monitoring.  相似文献   

20.
We describe a simple, fast, isocratic, reversed-phase high performance liquid chromatographic method for simultaneous determination of plasma zidovudine and nevirapine with UV detection at 260 nm. The method involves liquid-liquid extraction with ethyl acetate and using 3-isobutyl 1-methyl xanthine as internal standard. The system requires a C(18) column (150 mm x 4.6 mm I.D.) and a mobile phase composed of potassium dihydrogen phosphate (15 mM; pH 7.5) and acetonitrile in the ratio of 80:20 (v/v). The assay was linear from 0.025 to 10.0 microg/ml for zidovudine and 0.05 to 10.0 microg/ml for nevirapine. The intra- and inter-day variations were less than 10% for both the drugs. The method was specific and sensitive enough to allow quantification of zidovudine and nevirapine in concentrations observed clinically. The average recoveries of zidovudine and nevirapine from plasma were 95 and 94%, respectively. The method was applied to a pharmacokinetic study in HIV-infected patients who were receiving antiretroviral treatment with zidovudine and nevirapine containing regimens. The method spans the blood concentration range of clinical interest. Due to its simplicity, the assay can be used for pharmacokinetic studies and therapeutic drug monitoring in patients taking a combination treatment of zidovudine and nevirapine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号