首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
小麦叶片细胞周质微管的研究   总被引:1,自引:0,他引:1  
采用铜网粘附-负染色法,并结合超薄切片,对小麦幼叶和成熟叶片细胞内的周质微管进行了研究,结果如下: (1) 粘附于铜网支持膜上的质膜片段,往往包含一个组织中心的微管体系。微管组织中心具有电子致密度很高的浓密物质。微管从组织中心呈辐射状或扇形分布。微管之间,有单个或数根成束排列, 有的相互平行,有的则相互交叉形成网状结构。微管的外径为24—24.76毫微米,最大长度为12微米。(2) 周质微管与质膜之间有密切联系,两者之间有连丝结构(“桥”)相连接。微管-桥-质膜三者结合形成一个稳定的体系。(3) 不仅质膜能粘附于铜网的福尔马支持膜上,分离原生质体残留的细胞壁纤维素微丝也能粘附于其上。被粘附的网状排列的纤维素微丝与幼叶细胞中周质微管的网状排列相一致,说明周质微管与纤维素微丝排列方向的密切关系。(4) 正在迅速生长的幼叶细胞比成熟叶片具有更多的周质微管和小泡结构(Vesicles),显示这两种细胞器的数量与细胞生长及细胞壁增生加厚的活动强度成正相关。  相似文献   

2.
用微管免疫荧光方法观察了黄蝉花生殖细胞在花粉管中进行有丝分裂时的微管动态。微管在不同分裂期的分布情形很不一样。当生殖细胞由花粉进入花粉管后,细胞便立刻开始分裂进入早前期,在这阶段微管以一个紧密微管网笼子形式存在生殖细胞内。之后,细胞进入中前期,在此阶段细胞核扩大,染色体变粗,而存在细胞内的微管网逐渐变为疏松散漫状,跟着细胞进入晚前期,而微管笼子则由网状变为纵向排列状。分裂进入早中期微管变细并呈波浪状,微管由笼子结构过渡到纺锤体结构。进入中期,纺锤体全部形成,在纺锤体内可以清楚地看到两种不同类型的微管束,一种附着在染色体上,而另一种则从一极延伸至另一极。跟着细胞进入早后期,在这一阶段姊妹染色体分开并分别移向两极,在赤道板位置微管明显减少。之后,细胞进入晚后期,姊妹染色体集中在两极,极端有新微管出现。在两个染色体团之间又汇集了许多类似成膜体微管的微管。细胞进入分裂末期,存在赤道板位置的微管又再次减少,而在中央部位则新形成一“成膜体联接区”,把两个新形成的精子连接着。  相似文献   

3.
水稻胚囊发育过程中微管的变化   总被引:3,自引:1,他引:2  
对水稻(Oryza sativa L.)胚囊发育过程中微管变化的研究表明,微管在胚囊发育的不同阶段变化多样。在大孢子母细胞阶段微管分布主要呈辐射状,部分纵向排列。二分体和功能大孢子具类似的微管分布,而在单核胚囊微管主要是随机分布,部分呈辐射状。两核和四核胚囊的微管组成和分布非常相似,主要分布于细胞核周围。而八核胚囊的微管分布较为复杂,胚囊中的细胞做管分布各异,在卵细胞中呈随机分布,在助细胞中大多数呈纵向分布,而在中央细胞中呈横向分布,微管在反足细胞中非常分散,细胞质中有少量纵向排列的微管。  相似文献   

4.
微管是处于高度动态变化中的细胞结构。微管的动态性对于微管在细胞内许多特定功能的发挥至关重要。细胞内存在许多微管结合蛋白,对于微管的动态性及微管相关的细胞活动起着重要的调节作用,而微管结合蛋白与微管的相互作用又受到微管蛋白的翻译后修饰的调控。该综述主要讨论微管蛋白的翻译后修饰和微管结合蛋白如何影响微管动态结构,进而调控以微管为基础的细胞活动。  相似文献   

5.
利用改进的冰冻切片法结合间接免疫荧光标记技术对甘蔗茎尖细胞有丝分裂过程中微管骨架的变化进行了研究。结果表明, 在甘蔗茎尖细胞有丝分裂过程中存在4种循序变化的典型微管列阵,即周质微管、早前期微管带、纺锤体微管及成膜体微管。同时, 还观察到在各种典型微管列阵相互转变过程中存在各种微管列阵的过渡状态。甘蔗茎尖正在伸长的幼叶部位细胞的周质微管主要为与细胞伸长轴相垂直的横向周质微管; 茎尖幼叶部位伸长缓慢细胞的微管主要为纵向及斜向排列的周质微管,在甘蔗茎尖幼叶基部初生增粗分生组织处, 横向、斜向、纵向及随机排列的周质微管列阵均有分布。在少数分裂前期的细胞中, 发现细胞具有2条早前期微管带, 其具体功能还不清楚。表明甘蔗茎尖细胞微管列阵的变化与许多双子叶植物及部分单子叶植物具有共同的变化规律, 进一步证明微管骨架的周期性变化在植物中具有普遍性。  相似文献   

6.
利用改进的冰冻切片法结合间接免疫荧光标记技术对甘蔗茎尖细胞有丝分裂过程中微管骨架的变化进行了研究。结果表明,在甘蔗茎尖细胞有丝分裂过程中存在4种循序变化的典型微管列阵,即周质微管、早前期微管带、纺锤体微管及成膜体微管。同时,还观察到在各种典型微管列阵相互转变过程中存在各种微管列阵的过渡状态。甘蔗茎尖正在伸长的幼叶部位细胞的周质微管主要为与细胞伸长轴相垂直的横向周质微管:茎尖幼叶部位伸长缓慢细胞的微管主要为纵向及斜向排列的周质微管,在甘蔗茎尖幼叶基部初生增粗分生组织处,横向、斜向、纵向及随机排列的周质微管列阵均有分布。在少数分裂前期的细胞中,发现细胞具有2条早前期微管带,其具体功能还不清楚。表明甘蔗茎尖细胞微管列阵的变化与许多双子叶植物及部分单子叶植物具有共同的变化规律,进一步证明微管骨架的周期性变化在植物中具有普遍性。  相似文献   

7.
衣艳君 《生物学通报》2001,36(11):22-22
微管是细胞骨架系统中的主要成员 ,对它的研究是近 10年来才在植物细胞生物学中发展起来的热点之一。除了“骨架”方面的功能外 ,植物微管还有很多动态方面的功能 ,如细胞内囊泡和蛋白质颗粒的转运 ,有丝分裂过程中染色体的运动 ,细胞极性的确定以及信号传导等。早在 196 3年 ,微管被发现和确认后 ,实际上已看到微管在细胞周期中存在不同的排列方式。 2 0世纪 80年代初 ,用免疫荧光定位技术观察到整个有丝分裂过程中微管的动态变化 ,发现与染色体相似 ,微管的形成和分布也有 1个周期性的变化规律。目前已阐明 ,在高等植物体细胞每个有丝分裂…  相似文献   

8.
用抗微管蛋白抗体和荧光标记技术,观察了百合生殖细胞经有丝分裂形成精细胞过程中微管的变化。生殖细胞在分裂的前期,存在于核外围以及细胞两端胞质内的微管大都以微管束的形式沿细胞长轴方向平行排列。在靠近核的部位,有些微管有时会斜向排列。分裂进入中期后,染色体集中排列在赤道面。在染色体周围可以见到有多束与细胞长轴平行排列着的微管,但这些微管束是在分裂中期时新形成的或是在前期已存在,尚难以断定。这些微管束有一个特点,就是当它们延伸至赤道板部位时,在每一条微管束上都有一个无荧光的小圆区;这个小圆区可能代表着丝粒的位置。细胞分裂进入后期,姊妹染色单体分别向两极移动形成两组染色体。在它们之间近赤道板位置出现了一个具有强烈荧光的区域,显示在这一部位,微管相当浓密。从这一强烈荧光区向两极分别伸出多条微管束。因此,在这一强烈荧光区内可能有多个微管束重叠。到细胞分裂末期,在这一强烈的荧光区的中央出现了一条横向的无荧光区。这一区域有可能为胞质完成分裂后新形成的细胞板所在的部位。  相似文献   

9.
凝集素对细胞的凝集作用可被秋水仙硷、长春新硷和松胞素B所抑制;已知前两种药物能破坏微管,而松胞素B可分解微丝。因此认为凝集作用是和微丝、微管相关。此外,用荧光素、酶、铁蛋白或血蓝蛋白标记的凝集素与细胞作用,发现凝集素在正常细胞表面是随机分布的;在肿瘤细胞表面则是成簇分布的。许多实验证明细胞表面受体的成簇或成帽需要有完整的微丝及微管。这就是说凝集素在微丝和微管的作用下,使表面受体成簇,造成局部受体的浓聚,终于发生细胞凝集。这些观察结  相似文献   

10.
微管(上)     
一、序真核细胞的进化伴随着细胞的结构体制较大的变化。和它们的原核祖先相比较,真核细胞具有更复杂的细胞膜排列,各式各样的不对称的细胞形状,许多新的分泌、运动以及细胞内运送的系统,和遗传物质分离的新方法。这些进展中有许多可能紧紧地依赖着微管的进化,微管实际上是在所有真核生物的生活周期或发育史的某个时候在其细胞里找到的一种用途异常多的蛋白质聚合体。微管是真核生物所独有的并普  相似文献   

11.
本工作用我们自制的兔抗管蛋白血清经过间接免疫荧光染色检查,效价达到1:32,显示出我国小儿包皮成纤维细胞(正常二倍体细胞)内微管的特异分布。我们观察到在间期细胞内的微管(CMTC)系由核附近的微管组织中心(MTOC)发出到达细胞的边沿,或终止于质膜下方,或弯曲沿细胞表面平行分布;胞质内的微管纤维有的紧绕核周,有的伸入细胞突起内与主轴方向平行排列。当细胞进入分裂期(M期)时,不仅CMTC解聚,同时有丝分裂器纺锤体微管出现,细胞从扁平形状变成圆的外形。当有丝分裂完成后,纺锤体微管荧光消失,CMTC又逐渐代替而出现,细胞也恢复成为扁平形。CMTC在早G_1期开始出现,此时的子细胞之间由于极间微管束的残迹而呈现出荧光染色的阳性反应,是为中体。用秋水仙胺(0.06微克/毫升)在37℃下处理培养细胞,2小时后,CMTC解聚,变为弥散于细胞质内的管蛋白荧光,细胞外形变成更近似圆形或不规则的外形。洗去秋水仙胺,细胞在37℃的新鲜培养基内保温1.6小时后,CMTC又可复现,同时细胞外形又恢复到处理前的成纤维细胞形状。细胞在低温(0—4℃)处理1小时后,CMTC消失;当细胞再放回到37℃下保温16分钟后,CMTC开始恢复,30分钟后完全恢复。本实验用未免疫的同一家兔血清做对照染色,结果为阴性。本工作改用冷氯仿:甲醇(2:1)液固定细胞,在染色和洗涤时采用非离子性去污剂Triton X-100处理法,微管的荧光染色效果好,背景的非特异荧光减少。  相似文献   

12.
栅列藻(Scenedesmus sp.)是一种很重要的单细胞或群体绿藻,因其生长繁殖快,生活周期短,易于培养,故在近代藻类培养和生理生化研究中为各国学者所广泛应用. 栅列藻的细胞个体极小,长度一般小于10微米.在自然水体中常以2或4或8或16个细胞排列成定形群体而存在.人工培养时,细胞分散成单个.栅列藻的细胞壁厚且致密加之细胞内含量丰富的叶绿素,对细胞核有很大的遮掩性,因此,栅列藻细胞核的染色一直存在着  相似文献   

13.
封面故事     
如果把细胞看作城市,微管和微丝看作四通八达的市内公路,那分子马达则是在公路上高速行驶的货车。细胞内的生命物质,如信使RNA、蛋白质、细胞器和囊泡等,均需借助于分子马达和微管、微丝系统,才能在细胞中正确地定位并发挥功能,分子马达也因其重要的功能成为研究的热点。  相似文献   

14.
植物体通过一系列生理生化反应的改变来适应干旱胁迫。对干旱/复水及秋水仙素处理后再干旱/复水的仙鹤藓(Atrichum undulatum)原丝体细胞中微管骨架的动态变化进行了研究,发现干旱处理后细胞内微管骨架从有规律排列的较细的丝状形式转换为无规律排列的较粗的微管束;复水后微管骨架的结构和分布与对照细胞中无明显区别;秋水仙素处理后再干旱/复水的细胞中,微管骨架呈分散的棒状或点状分布,而且原丝体丧失了干旱胁迫后正常复水的能力,进而导致细胞不能恢复正常的生理活动。因此认为,微管骨架在仙鹤藓原丝体适应干旱逆境的过程中起着重要作用。  相似文献   

15.
AcMNPV核衣壳的形态发生   总被引:2,自引:0,他引:2  
报道了缺失多角体蛋白基因的AcMNPV在sf9细胞内核衣壳的形态发生过程。病毒衣壳蛋白首先装配成许多呈束状排列的直径为34nm中空长管状结构,然后是病毒DNA进入管内,装有DNA的长管按一定的长度间隔断开,形成成束的核衣壳,每个核衣壳的大小约34×260nm,最后成束的核衣壳被囊膜包被形成完整的多粒包埋型病毒粒子。  相似文献   

16.
水稻小孢子发育过程中微管骨架的变化   总被引:1,自引:0,他引:1  
对水稻(OryzasativaL.)小孢子发育过程中微管变化的研究表明,微管在小孢子不同发育阶段呈现多样性。在花粉母细胞内,微管形成许多粗束和分支,围绕着核分布形成一个网络。花粉母细胞经第一次减数分裂形成二分体。在每一个二分体细胞内,有许多微管束,从核周辐射至细胞质各部位;在细胞质存在一个疏松的微管束网络。二分体经第二次减数分裂形成四分体,在每一个四分体细胞内,微管束呈辐射状,从核膜辐射入细胞质内。四分体形成后不久,四分体的四个细胞便分开,每一个细胞变成一个独立的小孢子。在早期的小孢子细胞内,微管束呈疏松网状分布。其中有些微管束朝向胞质一个小突起聚集。当小孢子进入中期发育阶段,在胞质的小突起部位微管束密度增大。小突起最终形成为萌发孔。当小孢子发育至成熟期,细胞内的微管束变得纤细,而网络则变得紧密。之后的发育阶段(即花粉发育不同阶段)因荧光标记难以进入细胞,无法获得清晰的图像。  相似文献   

17.
微管骨架在轮藻节间细胞伸长生长中的作用   总被引:1,自引:0,他引:1  
利用免疫荧光定位及激光共聚焦扫描显微镜,结合细胞生长曲线的定量测定,对不同生长阶段的轮藻节间细胞微管骨架进行了观察研究,结果如下:轮藻顶端生长活跃的新生细胞中,与细胞长轴垂直的周质微管(cortical microtubules)占绝对优势,随着生长速率的减慢,周质微管由垂直于细胞长轴逐渐转为平行排列;基部生长基本停止的节间细胞中,胞内微管则以平行细胞长轴为主;不同生长阶段节间细胞的微管骨架,对微管特异解聚剂黄草消(oryzalin)处理的敏感性表现不相同。顶端生长活跃的节间细胞经oryzalin处理40min后,绝大多数周质微管发生解聚;而基部生长基本停止的老细胞中,即使延长处理时间,仍残留一些尚未完全解聚的微管片段;10μmol/L微管解聚剂oryzalin处理轮藻顶端新生细胞,在高精度的细胞伸长生长测定装置监测下,发现oryzalin对细胞的伸长生长速率有明显的抑制作用,去掉药剂后,伸长生长又有一定的恢复。并且发现,经oryzalin处理后,微管的解聚(40min左右)与顶端节间细胞伸长生长的停止(100min左右)两者间存在着时间上的差异,即微管解聚在先,细胞伸长停止在后。以上结果均说明微管骨架在轮藻节间细胞生长中具有重要作用。  相似文献   

18.
利用免疫荧光定位及激光共聚焦扫描显微镜,结合细胞生长曲线的定量测定,对不同生长阶段的轮藻节间细胞微管骨架进行了观察研究,结果如下:轮藻顶端生长活跃的新生细胞中,与细胞长轴垂直的周质微管(cortical microtubules)占绝对优势,随着生长速率的减慢,周质微管由垂直于细胞长轴逐渐转为平行排列;基部生长基本停止的节间细胞中,胞内微管则以平行细胞长轴为主;不同生长阶段节间细胞的微管骨架,对微管特异解聚剂黄草消(oryzalin)处理的敏感性表现不相同。顶端生长活跃的节间细胞经oryzalin处理40min后,绝大多数周质微管发生解聚;而基部生长基本停止的老细胞中,即使延长处理时间,仍残留一些尚未完全解聚的微管片段;10μmol/L微管解聚剂oryzalin处理轮藻顶端新生细胞,在高精度的细胞伸长生长测定装置监测下,发现oryzalin对细胞的伸长生长速率有明显的抑制作用,去掉药剂后,伸长生长又有一定的恢复。并且发现,经o-ryzalin处理后,微管的解聚(40min左右)与顶端节间细胞伸长生长的停止(100min左右)两者间存在着时间上的差异,即微管解聚在先,细胞伸长停止在后。以上结果均说明微管骨架在轮藻节间细胞生长中具有重要作用。  相似文献   

19.
通过尖端直径小于1微米的微管, 把极少量的化学物质注在细胞极小的某一区域内。以研究细胞对各种化学物质的反应,这是细胞生物学和神经生物学常用的研究手段。虽然可用加压的方法,从微管中推出化学物质,但它有一些缺点,例如容易造成细胞损伤,化学物质从微管尖端向外自由扩散难以克服。注入物质的量和时间不易精确控制等。而用电流来控制化学  相似文献   

20.
中心体是一种重要的细胞器,约由100多种蛋白质所组成,结构上包括中心粒和中心体基质。作为细胞的微管组织中心,决定着细胞微管的极性、数目及分布。中心体通过它对细胞骨架的作用而操纵着细胞的形状、极性和运动以及细胞内物质的运输,在细胞分裂过程中形成确保染色体均匀分配给子细胞的纺锤体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号