首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study examined the kinds of desmosomal proteins in the human periodontal ligament fibroblasts (PDLFs). The PDLFs obtained from young and older patients were cultured and the amounts of desmosomal proteins were measured by ELISA with antibodies to desmoplakins, desmogleins, and desmocollins. Cultured cells and tissue sections of the human periodontal ligament were immunostained with the same antibodies. Expression of desmosomal proteins in the PDLFs was clearly demonstrated both by ELISA and the immunohistochemical studies, suggesting the existence of desmosome-like junctions in the PDLFs. The junctions are considered to protect gap junctions in the PDLFs against cell transformation caused by cell contraction, which may relate to tooth eruption and repair of periodontal tissue, and/or strong occlusal forces. Statistically significant differences (P < 0.0001) in the expression of desmoplakins and desmogleins between younger and older patients were observed in this study.  相似文献   

2.
Periodontal ligament (PDL) fibroblasts play critical roles in the regeneration of periodontal tissues damaged by periodontitis. Histone deacetylase inhibitors (HDIs) have been suggested to be potential tools in tissue engineering. The feasibility of using the HDI, sodium butyrate (NaB) for periodontal regeneration was examined by evaluating its effect on the osteogenic differentiation of human PDL fibroblasts and its modulation of the inflammatory responses to lipopolysaccharide (LPS). NaB did not cause significant cell death at 100 μM but promoted the expression of the osteoblast phenotype (Runx2, osterix, osteocalcin, and bone sialoprotein). NaB significantly inhibited the LPS-induced production of reactive oxygen species and the expression of pro-inflammatory cytokines (IL-1β and TNF-α). These results suggest that HDIs can offer a potential therapeutic agent for periodontal regeneration.  相似文献   

3.
4.
5.
The expressions of connexin 43 and 32 in cultured and intact human periodontal ligament fibroblasts (PDLFs) were examined using immunohistochemical methods, and western blot analysis was conducted with anti-connexin 43 and 32 in cultured PDLFs. The PDLFs both in cultured cells and tissue sections reacted with anti-connexin 43 and 32, and western blot analysis showed bands of approximately 43 kD and 27 kD reacted with anti-connexin 43 and 32 respectively, suggesting the existence of gap junctions in human PDLFs. In cultured PDLFs there were no reaction products of connexin 43 when the cells were not in contact with adjacent cells, but reaction products were increasingly observed with increases in cell-cell contacts. Different from connexin 43, the reaction products of connexin 32 were found in the cytoplasm, regardless of whether the cells were or were not in contact with adjacent cells. Further, the reaction activity of connexin 32 varied among PDLFs; some were strong, some moderate, and some weak. The expressions of connexin 43 and 32 in human PDLFs are suggested to be related to the regulation of two different functions of the PDLFs.  相似文献   

6.
Cryopreservation of teeth before autotransplantation may create new possibilities in dentistry. The purpose of this study was to examine the effect of a standardised cryopreservation procedure on human periodontal ligament (PDL) cell cultures. Human PDL fibroblasts obtained from immature third molars of 11 patients were cultured and divided into two groups. The experimental group was cryopreserved and cultured after thawing. The control group was cultured without cryopreservation. A comparison was made between cryopreserved and control cells. To evaluate possible differences in the characteristics of the fibroblasts, the cells in both groups were tested for viability (membrane integrity), growth capacity and alkaline phosphatase (ALP) expression. The Wilcoxon test for paired comparison between cryopreserved and non-cryopreserved cells was performed for each characteristic. The results showed that membrane integrity of cells was not influenced by cryopreservation. There was no statistically significant difference in growth capacity between cryopreserved and control cells. Non-cryopreserved cells were slightly stronger positive for ALP, but the difference was not statistically significant. From these experiments it can be concluded that the observed parameters are not influenced by cryopreservation.  相似文献   

7.
目的:探讨游离脂肪酸(FFAs)对人牙周膜成纤维细胞增殖的影响,研究游离脂肪酸在代谢综合征患者牙周病发病机制中的作用。方法:选用在牙周组织修复中起主要作用的人牙周膜成纤维细胞进行体外培养,对照组加入不含胎牛血清的DMEM,实验组分别加入不同浓度的游离脂肪酸进行刺激,在刺激24h-72h后,采用四甲基偶氮唑蓝比色(MTT)法检测人牙周膜成纤维细胞的增殖情况。结果:与对照组相比,游离脂肪酸可以抑制人牙周膜成纤维细胞的生长增殖(P<0.01),并且这种抑制作用具有浓度和时间依赖性,以培养72h后抑制作用最为明显(P<0.01)。结论:游离脂肪酸可以抑制牙周膜成纤维细胞的增殖,降低代谢综合征患者牙周组织的的修复能力,从而导致或加重牙周病的发生或发展。  相似文献   

8.
Recent studies have suggested multiple functions of periodontal ligament fibroblasts (PDLFs) which may relate to the permeability of gap junctions composed of various types of connexins (Cxs). At present, 15 types of Cxs are known to exist, and six of their antibodies, anti-Cx26, Cx32, Cx37, Cx40, Cx43, and Cx45 are commercially available. This study aims to examine which types of Cxs are expressed in cultured PDLFs by an immunohistochemical method, western blotting, and RT-PCR.The study confirmed the expressions of Cx32, Cx40, Cx43, and Cx45 in PDLFs, while Cx26 and Cx37 were not detected. Considering previous reports, Cx32 may relate to the secretory function, and Cx40 and Cx45 to the contractile function of PDLFs, however, a function for Cx43 has not been specified. In the immunohistochemical examination, different localizations of Cx40/43 and Cx32/45 were established. The former were observed punctately, suggesting that a large part of Cx40/43 may exist in the cell membrane and construct gap junctions. In contrast, the latter were observed uniformly in all the cells, indicating that they are present both in the cell membrane and in the cytoplasm of the cells.  相似文献   

9.
Osteocalcin production of senescent periodontal ligament fibroblasts (PDLF) with the expression of senescence-associated beta-galactosidase (SA-beta-Gal) was investigated on clones from 50-80 years old donors (n=20) with teeth extracted due to periodontitis and dental caries, and from 15-19 year old donors (n=20) with normal teeth extracted for orthodontic reasons. Immunohistochemically, the nonsenescent PDLF in all cultures in passage 2 showed strong reactivity with anti-osteocalcin. The reactive intensity of PDLF (passage 2, PD 3.0) was significantly stronger in 50-80 year old donor group than in 15-19 year old donor group, suggesting that osteocalcin production of PDLF cultured in early passage is larger in cells from adult population than in cells from adolescent population. In PDLF cultures in passage 2 from 50-80 year old donor, two types of senescent cells were found: one with strong reactivity to anti-osteocalcin and the other with little detectable reactivity. The culture consisted of senescent PDLF (passage 8, PD 14.8) did not include cells which have a detectable reactivity with anti-osteocalcin immunohistochemically and the reactive intensity was significantly weaker in the senescent culture than in the culture in passage 2 by ELISA. This suggests that the production potential of osteocalcin is impaired in PDLF with aging in culture. Further, the reactive intensity with anti-osteocalcin of PDLF in passage 2 deprived of serum for 48 h was 6% of that of cells cultured with serum and the reaction increased after serum stimulation, suggesting that the osteocalcin production in PDLF in early passage is implicated in mitogenic stimulation.  相似文献   

10.
The osteogenic cell type of human periodontal ligament fibroblasts (PDLF) undergoes senescence at finite population doubling numbers unrelated to donor ages. This study investigated telomere lengths of osteogenic PDLF from differently aged donors and alterations of the osteoblast-like properties in the aged PDLF with short telomeres. Telomere lengths of osteogenic PDLF were biased towards long or short among all 15- to 51-year-old individuals, and did not show a normal distribution by Pearsons test or a correlation to donor age by simple regression analysis. In osteogenic PDLF, senescence-associated -galactosidase was expressed in 78.5% of cells in the clones with short telomeres (mean 3.02 kbp), and in 9.4% of cells in the clones with long telomeres (mean 13.06 kbp). These results suggest that human periodontium comprises aged osteogenic PDLF without correlation to age. Osteogenic PDLF with long telomeres strongly expressed alkaline phosphatase (ALPase) activity whereas cells with short telomeres expressed ALPase activity to a weaker extent. Total activity of ALPase in the clones of osteogenic PDLF with long telomeres was significantly higher than that in the clones with short telomeres. The produced amounts of both osteopontin and osteocalcin in the clones of osteogenic PDLF with long telomeres were slightly but statistically significantly smaller than those in the clones with short telomeres. These findings suggest that aged osteogenic PDLF reduce the expression of ALPase activity but that there is not a critical alteration in bone-associated protein production. Aged osteogenic PDLF may impair the ability to induce ALPase-dependent calcification.This work was supported by a grant-in-aid for Scientific Research (B) (2) from the Ministry of Education, Science, Sports, and Culture of Japan (No. 12470379).  相似文献   

11.
Mutations in two genes, uncoordinated (unc) and uncoordinated-like (uncl), lead to a failure of mechanotransduction in Drosophila. UNCL, the human homolog of unc and uncl, is preferentially expressed in periodontal ligament (PDL) fibroblasts compared with gingival fibroblasts. However, the precise role of UNCL in the PDL remains unclear. The aim of the present study has been to examine whether mechanical stimuli modulate the expression of UNCL in the human PDL in vivo and in vitro and to examine the roles of UNCL in the development, regeneration, and repair of the PDL. We have investigated the expression pattern of UNCL during the development of periodontal tissue and the response of PDL fibroblasts to mechanical stress in vivo and in vitro. The expression of UNCL mRNA and protein increases with PDL fibroblast differentiation from the confluent to multilayer stage but slightly decreases on mineralized nodule formation. UNCL has also been localized in ameloblasts and adjacent cells, differentiating cementoblasts, and osteoblasts of the developing tooth. Strong distinct UNCL expression has further been observed in the differentiating cementoblasts of the tooth periodontium at the site of tension after orthodontic tooth movement. Application of cyclic mechanical stress on PDL fibroblasts increases the expression of UNCL mRNA. These results indicate that UNCL plays important roles in the development, differentiation, and maintenance of periodontal tissues and also suggest a potential role of UNCL in the mechanotransduction of PDL fibroblasts.This work was supported by a grant from the Korea Health 21R&D Project, Ministry of Health & Welfare, Republic of Korea (03-PJ1-PG1-CH08-0001).  相似文献   

12.
This study evaluated the effects of bFGF and TGF-beta, individually and combined, on cell proliferation and collagen metabolism. Primary human periodontal ligament cells were stimulated with two concentrations (1 and 10 ng/ml) of each growth factor, both individually and combined. Proliferation was determined by a commercial biochemical assay. Real time RT-PCR determined gene expression of MMP-1 and -2, collagen types I and III, TIMP-1, -2 and -3. Autocrine effects on synthesis of bFGF and TGF-beta were evaluated by ELISA. Only TGF-beta, either isolated or associated with bFGF, significantly increased cell proliferation. TGF-beta had anabolic effects, increasing expression of type I and III collagen as well as of TIMPs, whereas bFGF had opposite effects. When bFGF and TGF-beta were associated, the anabolic effects prevailed. Synthesis of TGF-beta was induced only by the association of lower concentrations of the growth factors, whereas there was a dose-dependent production of bFGF. It is concluded that bFGF had a predominantly catabolic effect, and TGF-beta exerted an anabolic effect on hPDL cells.  相似文献   

13.
Various studies indicate that periodontal ligament fibroblasts (PLF) have some similarities to osteoblasts, for example they have the capacity to induce the formation of osteoclast-like cells. Here, we investigated whether a second population of tooth-associated fibroblasts, gingival fibroblasts (GF), has similar osteoclastogenesis properties. PLF and GF were co-cultured with peripheral blood mononuclear cells (PBMC) in the presence and absence of dexamethasone and 1alpha,25dihydroxycholecalciferol (dex + vit D(3)) on plastic and on cortical bone slices. Tartrate resistant acid phosphatase (TRACP) positive multinucleated cells (MNCs) were more abundant in co-cultures with PLF than in GF-PBMC co-cultures, more abundant on plastic compared to bone and more abundant in the presence of dex + vit D(3). In line with these findings was an inhibition of MNC formation and not inhibition of existing osteoclasts by medium conditioned by GF. We next investigated whether expression of molecules important for osteoclastogenesis differed between the two types of fibroblasts and whether these molecules were regulated by dex + vit D(3). OPG was detected at high levels in both fibroblast cultures, whereas RANKL could not be detected. Resorption of bone did not occur by the MNCs formed in the presence of either fibroblast subpopulation, suggesting that the fibroblasts secrete inhibitors of bone resorption or that the osteoclast-like cells were not functional. The incapacity of the MNCs to resorb was abolished by culturing the fibroblast-PBMC cultures with M-CSF and RANKL. Our results suggest that tooth-associated fibroblasts may trigger the formation of osteoclast-like cells, but more importantly, they play a role in preventing bone resorption, since additional stimuli are required for the formation of active osteoclasts.  相似文献   

14.
Cryopreservation is used to protect vital periodontal ligaments during the transplantation of teeth. We investigated which gene products implicated in root resorption are upregulated in human periodontal ligament cells by cryopreservation, and whether cryopreservation affects the expression of macrophage-colony stimulating factor (M-CSF) in human periodontal ligament cells. We used customized microarrays to compare gene expression in human periodontal ligament cells cultured from teeth immediately after extraction and from cryopreserved teeth. Based on the result of these assays, we examined M-CSF expression in periodontal ligament cells from the immediately extracted tooth and cryopreserved teeth by real-time PCR, enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and immunofluorescence. We also investigated whether human bone marrow cells differentiate into tartrate-resistant acid phosphatase (TRAP) positive osteoclasts when stimulated with RANKL (Receptor Activator for Nuclear Factor κ B Ligand) together with any secreted M-CSF present in the supernatants of the periodontal ligament cells cultured from the various groups of teeth. M-CSF was twofold higher in the periodontal ligament cells from the rapid freezing teeth than in those from the immediately extracted group (p < 0.05). Cryopreservation increased M-CSF expression in the periodontal ligament cells when analyzed by real time PCR, ELISA, Western blotting, and immunofluorescence (p < 0.05). TRAP positive osteoclasts were formed in response to RANKL and the secreted M-CSF present in the supernatants of all the experimental groups except negative control. These results demonstrate that cryopreservation promotes the production of M-CSF, which plays an important role in root resorption by periodontal ligament cells.  相似文献   

15.
The capacity of human periodontal ligament fibroblasts (PLF) to proliferate in response to mechanical force plays a critical role in orthodontic tooth movement. Extensive research has not fully revealed the mechanisms by which the PLF respond to mechanical force. The responses to force differ according to the origin of cells and the type of stress applied. In this study, we examined the proliferative response of PLF to tensile force. We also explored cellular mechanisms involved in the mechanosignal transduction of tensile force. Application to the force to PLF with 1.5% elongation for 1 h inhibited cell proliferation. This was accompanied by reductions in several cyclins and cyclin-dependent kinases (CDKs) involved in the G(1)/S transition; however, p21 knockdown prevented these events. Pharmacological inhibitor of p38 MAPK suppressed the force-mediated growth inhibition as well as the decrease in p21 expression. Ras inhibitor almost completely blocked the tension-mediated increases in p-p38 MAPK and p-p21, and the attendant increase in PLF proliferation. These findings suggest that tension force activates Ras-p38 MAPK pathways in PLF, which up-regulate p21 and arrest cell cycle progression at the G(1) phase.  相似文献   

16.
The protein content of an individual periodontal ligament fibroblast decreases with increasing cell density during growth in culture. A mean total protein concentration of 3.3 +/- 0.4 micrograms per 10(3) cells was calculated. This reference value can be used in studies evaluating enzyme activities, transport rates or metabolic functions.  相似文献   

17.
During periodontal regeneration, multiple cell types can invade the wound site, thereby leading to repair. Cell motility requires interactions mediated by integrin receptors for the extracellular matrix (ECM), which might be useful in guiding specific cell populations into the periodontal defect. Our data demonstrate that fibroblasts exhibit differential motility when grown on ECM proteins. Specifically, gingival fibroblasts are twice as motile as periodontal ligament fibroblasts, whereas osteoblasts are essentially non-motile. Collagens promote the greatest motility of gingival fibroblasts in the following order: collagen III>collagen V>collagen I. Differences in motility do not correlate with cell proliferation or integrin expression. Osteoblasts display greater attachment to collagens than does either fibroblast population, but lower motility. Gingival fibroblast motility on collagen I is generally mediated by α2 integrins, whereas motility on collagen III involves α1 integrins. Other integrins (α10 or α11) may also contribute to gingival fibroblast motility. Thus, ECM proteins do indeed differentially promote the cell motility of periodontal cells. Because of their greater motility, gingival fibroblasts have more of a potential to invade periodontal wound sites and to contribute to regeneration. This finding may explain the formation of disorganized connective tissue masses rather than the occurrence of the true regeneration of the periodontium. This research was supported by the Louisiana Board of Regents through the Millennium Trust Health Excellence Fund, HEF-(2000-05)-04.  相似文献   

18.
Extracellular matrix components play an important role in modulating cellular activity. To study such capacities of the matrix, fibroblasts are frequently cultured in a three-dimensional gel and contraction is assessed as a measure of cellular activity. Since a connective tissue contains several types of collagen, we investigated the effect of gels composed of collagen I alone or in combination with 10% collagen III and/or 5% collagen V on contraction by human periodontal ligament fibroblasts. Gels containing collagen V contracted much faster than those without this type of collagen. Blocking of the integrin beta1-subunit with an activity-blocking antibody delayed (gels with collagen V) or almost completely blocked (gels without collagen V) contraction. Use of an antibody directed against integrin alpha2beta1 resulted in delay of gel contraction for gels both with and without collagen V. Anti-integrin alpha v beta3 or RGD peptides partially blocked contraction of gels containing collagen V, but had no effect on gels consisting of collagen I alone. The beta1-containing integrins are involved in the basal contraction by fibroblasts that bind to collagens I and III. The enhanced contraction, stimulated by collagen V, appears to be mediated by integrin alpha v beta3. We conclude that collagen V may play an important modulating role in connective tissue contraction. Such a modulation may occur during the initial stages of wound healing and/or tissue regeneration.  相似文献   

19.
Han J  Meng HX  Tang JM  Li SL  Tang Y  Chen ZB 《Cell proliferation》2007,40(2):241-252
OBJECTIVES: The use of platelets and platelet products has become increasingly popular clinically as a means of accelerating endosseous wound healing. It is likely that growth factors released by activated platelets at the site of injury play a role in periodontal regeneration by regulating cellular activity. The purpose of this study was to evaluate the biological effects of platelet-rich plasma (PRP) on human periodontal ligament cells (hPDLCs) in vitro. MATERIALS AND METHODS: Primary cultures of hPDLCs were obtained from healthy premolars. PRP was isolated by two-step centrifugation. Two main growth factors present in the thrombin-activated PRP (platelet-derived growth factor [PDGF-AB] and transforming growth factor-beta1 [TGF-beta1]) were evaluated using ELISA assay. Activated PRP or the combination of recombined human TGF-beta1 (rhTGF-beta1) and PDGF-AB (rhPDGF-AB) were added to hPDLCs in different concentrations to assess cell proliferation and osteogenic differentiation. RESULTS: PRP contained high levels of TGF-beta1 and PDGF-AB. Cell attachment, proliferation and ALP activity were enhanced by addition of PRP or rhTGF-beta1 and rhPDGF-AB combination to the cell cultures, while the stimulatory potency of PRP was much greater than the latter. These stimulatory effects presented in a dose-dependant manner, it seemed that PRP with 50~100 ng/ml TGF-beta1 was an ideal concentration. CONCLUSIONS: PRP can enhance hPDLC adhesion, proliferation and induce the differentiation of hPDLC into mineralized tissue formation cell; thereby contribute to the main processes of periodontal tissue regeneration. For economical and biological reasons, PRP has more clinical beneficial than analogous growth factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号