首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutaraldehyde has been used for several decades as an effective crosslinking agent for many applications including sample fixation for microscopy, enzyme and cell immobilization, and stabilization of protein crystals. Despite of its common use as a crosslinking agent, the mechanism and chemistry involved in glutaraldehyde crosslinking reaction is not yet fully understood. Here we describe feasibility study and results obtained from a new approach to investigate the process of protein crystals stabilization by glutaraldehyde crosslinking. It involves exposure of a model protein crystal (Lysozyme) to glutaraldehyde in alkaline or acidic pH for different incubation periods and reaction arrest by medium exchange with crystallization medium to remove unbound glutaraldehyde. The crystals were subsequently incubated in diluted buffer affecting dissolution of un-crosslinked crystals. Samples from the resulting solution were subjected to protein composition analysis by gel electrophoresis and mass spectroscopy while crosslinked, dissolution resistant crystals were subjected to high resolution X-ray structural analysis. Data from gel electrophoresis indicated that the crosslinking process starts at specific preferable crosslinking site by lysozyme dimer formation, for both acidic and alkaline pH values. These dimer formations were followed by trimer and tetramer formations leading eventually to dissolution resistant crystals. The crosslinking initiation site and the end products obtained from glutaraldehyde crosslinking in both pH ranges resulted from reactions between lysine residues of neighboring protein molecules and the polymeric form of glutaraldehyde. Reaction rate was much faster at alkaline pH. Different reaction end products, indicating different reaction mechanisms, were identified for crosslinking taking place under alkaline or acidic conditions.  相似文献   

2.
Rat brain proteins able to react with anti-myelin basic protein antiserum, raised under conditions to induce experimental allergic encephalomyelitis in rabbits, were examined by immunoblot methods after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Apart from the four forms of myelin basic protein present in rat brain, the antiserum detected other proteins of higher molecular weight. Subcellular fractionation shows that these high-molecular-weight proteins are relatively concentrated in a synaptosome-enriched fraction compared to a myelin fraction. A major protein fraction immunorelated to myelin basic protein migrated in the gels as a doublet with apparent molecular weights of approximately 80K and 86K; these proteins were tentatively identified as synapsin Ia and Ib. A purified synapsin preparation analyzed by immunoblot after two-dimensional gel electrophoresis also reacted with anti-myelin basic protein antisera. When the serum was purified by affinity chromatography on a myelin basic protein-conjugated Sepharose column the nonadsorbed material lost this activity whereas the eluted antibodies reacted with myelin basic protein and synapsin. In addition, sequence amino acid comparison of decapeptides showed some homology between these two proteins. A possible implication of immunological agents against myelin basic protein cross-reacting with extra-myelin proteins in the process of experimental allergic encephalomyelitis is considered.  相似文献   

3.
Abstract— (1) Two myelin fractions of bovine peripheral nerve and spinal cord have been studied comparatively. Cholesterol as well as cerebroside content per mg of protein in the peripheral nerve myelin was less than that in the spinal cord myelin, while no significant difference in the total phospholipid content was noted.
(2) The basic proteins in myelin fractions were quantitatively estimated by disc gel electrophoresis. Around one-fourth of the total myelin protein in the bovine peripheral nerve was a basic protein with a mobility of 1.07 relative to lysozyme by Reisfeld's disc gel electrophoresis.
(3) The myelin proteins in the peripheral nerve were less completely solubilized than those of the spinal cord by treatment with deoxycholate as well as by Triton-salt solution. The protein fractions obtained from the peripheral nerve myelin by techniques similar to that for obtaining the proteolipids from the spinal cord myelin, contained different types of protein.
(4) 2',3'-Cyclic nucleotide 3'-phosphohydrolase activity in the peripheral nerve myelin was only one tenth of that in the spinal cord myelin. The Triton-salt insoluble fraction showed remarkable high activity among subfractions of the spinal cord myelin.
(5) By immunological studies, it may be concluded that an antigenic substance for experimental allergic neuritis was localized in the peripheral nerve myelin, but not in its basic protein.  相似文献   

4.
Evidence presented demonstrates a covalent attachment of a phospholipid to bovine myelin basic protein. Partial characterization of the phospholipid moiety was performed on myelin basic protein obtained from 32P-phosphorylated whole myelin that was first delipidated by two ether/ethanol (3:2 v/v) extractions, ether extraction, and acetone extraction and then purified by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The myelin basic protein was precipitated with aqueous acetone and treated with proteases. Treatment with carboxypeptidase Y or trypsin for several hours released a lipophilic fragment, which was purified by reverse-phase high-performance liquid chromatography to yield two "lipopeptides". Such lipopeptides were obtained from both the major and minor myelin basic proteins of rat and bovine brain. Treatment with either mild base or phospholipase C removes the lipophilic character of the peptide fragment. The lipophilic fragment is a substrate for phospholipase D, but it does not comigrate on thin-layer chromatography with any 32P-labeled lipid obtained from myelin incubated with [gamma-32P]ATP. Polyphosphoinositides were shown to be released by mild acid treatment of myelin basic protein that had been extracted with organic solvent and then purified by SDS-polyacrylamide gel electrophoresis. Along with the fact that inositol monophosphate was identified in the partial acid hydrolysate of the lipopeptide, we have concluded that polyphosphoinositide (phosphatidylinositol 4-phosphate and/or phosphatidylinositol 4,5-bisphosphate) was the original phospholipid portion of the lipopeptide.  相似文献   

5.
P Schulz  T F Cruz  M A Moscarello 《Biochemistry》1988,27(20):7793-7799
Fractions containing myelin of varying degrees of compaction were prepared from human white matter. Protein kinase activity in these fractions was measured by using both endogenous and exogenous myelin basic protein (MBP) as substrates. In both cases, less compact myelin fractions possessed higher levels of protein kinase activity than the compact myelin fraction. In addition, the specific activity of phosphorylated basic protein was greater in the loosely compacted fractions than in compact multilamellar myelin. When basic protein in compact myelin or the myelin fractions was phosphorylated by the endogenous kinase, approximately 70% of the [32P]phosphate was incorporated at a single site, identified as Ser-102. The remaining 30% was found in three other minor sites. Electron microscopy of less compact myelin showed it was composed of fewer lamellae which correlated with a relative decrease in the proportion of cationic charge isomers (microheteromers) when MBP was subjected to gel electrophoresis at alkaline pH. The shift in charge microheterogeneity of basic protein to the less cationic isomers in the less compact myelin fractions correlated with an increase in protein kinase activity and a greater specific activity of phosphorylated basic protein.  相似文献   

6.
We report (a) that the shiverer mutation has pleiotropic phenotypic effects on myelin basic protein expression in the CNS of homozygous (shi/shi) mice and (b) that each of the effects of the shiverer allele is expressed co-dominantly with the wild-type allele in heterozygous (+/shi) animals. First, the total amount of myelin basic protein, as determined by radioimmunoassay, that accumulates in the CNS is approximately 0.1% of the wild-type amount in shi/shi animals and approximately 50% in +/shi animals. Second, the four major forms of myelin basic protein, with molecular weights of 21,500, 18,500, 17,000, and 14,000, that are present in wild-type mouse CNS are undetectable in either whole brain or purified myelin of shi/shi animals, and each of the four proteins is reduced commensurately in brain and myelin of +/shi animals. Third, the small amount of myelin basic protein-related material that does accumulate in the shi/shi brain consists of several polypeptides, with molecular weights ranging from 25,000 to 100,000, the pattern of which is different from that found in wild-type brain. The pattern of myelin basic protein-related polypeptides in +/shi brain is a composite of the wild type and the shiverer mutant. Fourth, messenger RNA from shi/shi brain, when translated in vitro, encodes a set of myelin basic protein-related polypeptides qualitatively similar to that encoded by wild-type messenger RNA, except that the 18,500 and 14,000 translation products are greatly reduced, while other myelin basic protein-related translation products are spared. The pattern of myelin basic protein-related translation products for +/shi messenger RNA is intermediate between the patterns for +/+ and shi/shi messenger RNAs. The results suggest that the genetic lesion in the shiverer mutation impinges on the structural gene (or genes) encoding myelin basic protein or on a cis-acting regulatory element controlling that gene (or genes).  相似文献   

7.
Abstract— Two basic peptides (B1 and B2) were derived from bovine spinal cord following in situ proteolysis at 37°C for 10–24 h. These peptides do not arise as degradation products from the A1 protein as shown by amino acid composition and end group analysis; rather they appear to originate from some larger basic protein in the spinal cord having similarities to the P2 protein, a basic protein found in peripheral nerve myelin. The peptides were purified following defatting, acid extraction, and ammonium sulphate fractionation, by chromatography on Amberlite IRC-50 resin using guanidinium chloride. The peptides, found generally in a 4:1 ratio of B1 to B2, appeared homogeneous on gel electrophoresis and immunodiffusion. Approximately 25–60 mg of peptides was obtained per 100 g wet spinal cord.
In contrast to the basic A1 protein from myelin, neither of these peptides nor their pepsin digests were encephalitogenic. They do not cross-react immunologically with the basic A1 protein, but cross-react with each other. These peptides further differ from the A1 protein in their tryptic peptide map, size (B1, 63 residues; B2, 54 residues), and composition particularly the high lysine: arginine ratio, and low histidine content. Like the A1 protein, however, they contain a tryptophan residue and a blocked NH2-terminal amino acid; peptide Bl has COOH-terminal valine. It was concluded that the basic peptides represent a fragment of a hitherto unidentified protein(s) of the nervous system.  相似文献   

8.
Phosphorylation in vivo of four basic proteins of rat brain myelin   总被引:15,自引:3,他引:12       下载免费PDF全文
When rat brain myelin was examined by sodium dodecyl sulphate/polyacrylamideslab-gel electrophoresis followed by fluorography of the stained gel, it was found that a host of proteins of rat brain myelin were labelled 2, 4 and 24h after the intracerebral injection of H332PO4. Among those labelled were proteins migrating to the positions of myelin-associated glycoprotein, Wolfgram proteins, proteolipid protein, DM-20 and basic proteins. The four basic proteins with mol.wts. 21000, 18000 (large basic protein), 17000 and 14000 (small basic protein) were shown to be phosphorylated after electrophoresis in both acid-urea- and sodium dodecyl sulphate-containing gel systems followed by fluorography. The four basic proteins imparted bluish-green colour, after staining with Amido Black, which is characteristic of myelin basic proteins. The four basic proteins were purified to homogeneity. Fluorography of the purified basic proteins after re-electrophoresis revealed the presence of phosphorylated high-molecular-weight `polymers' associated with each basic protein. The amino acid compositions of the phosphorylated large basic protein and small basic proteins are compatible with the amino acid sequences. Proteins with mol.wts. 21000 and 17000 gave the expected amino acid composition of myelin basic proteins. Radiolabelled phosphoserine and phosphothreonine were identified after partial acid hydrolysis of the four purified basic proteins. The [32P]phosphate–protein bond in the basic protein was stable at an acidic pH but was readily hydrolysed at alkaline pH, as would be expected of phosphoester bonds involving both serine and threonine residues. Double-immunodiffusion analysis demonstrated that the four phosphorylated proteins showed complete homology when diffused against antiserum to a mixture of small and large basic proteins. Since the four basic proteins of rat brain myelin were phosphorylated both in vivo and in vitro it is postulated that the same protein kinase is responsible for their phosphorylation in both conditions.  相似文献   

9.
Myelin was isolated from the brains of mice 15, 20, 30, and 60 days after birth. The total amount of basic protein present in the isolated myelin was determined by radioimmunoassay. The 4 myelin basic proteins, with molecular weights of 21,500, 18,500, 17,000 and 14,000, were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and their relative amounts were determined densitometrically. The absolute amount of each of the basic proteins was calculated from its relative amount on the gel and from the total amount of myelin basic protein in the sample as determined by radioimmunoassay. The results show that between 10 and 30 days after birth each protein accumulates at a characteristic rate so that the molar ratios among the 4 basic proteins are (in descending order according to their molecular weights) 1:5:2:10 during this period. Between 30 and 60 days after birth the 14 K and 18.5 K proteins continue to accumulate at reduced rates while the 21.5 K and 17 K proteins begin to disappear from the myelin membrane; 60 days after birth the molar ratios among the 4 basic proteins are 1:10:3.5:35. These developmental patterns of accumulation are discussed in relation to the possible role of each of the 4 myelin basic proteins in myelination.  相似文献   

10.
Free and membrane-bound polyribosomes were isolated from the forebrain of actively myelinating 24-day-old rats. The poly(A)+ RNA (polyadenylated RNA) extracted from both fractions was translated in vitro in reticulocyte lysates [Hall & Lim (1981) Biochem. J. 196. 327-336] in the presence or absence of a heterologous microsomal membrane fraction from dog pancreas. The rat myelin basic proteins synthesized in vitro were isolated by CM-cellulose chromatography and by immunoprecipitation with purified anti-(myelin basic protein) antibody. The large (mol.wt. 18 500) and small (mol.wt. 16 000) myelin basic proteins were translational products of poly(A)+ RNA from both free and membrane-bound polyribosomes. The identity of the myelin basic proteins was verified by analysis of peptides generated by the cathepsin D digestion of the immunoprecipitated proteins synthesized in vitro, in comparison with authentic rat myelin basic proteins. Although several other translational products of membrane-bound polyribosomal poly(A)+ RNA were modified when microsomal membranes were present during translation, molecular weights of the myelin basic proteins themselves were unchanged. The myelin basic proteins synthesized in vitro also did not differ significantly in size from the authentic myelin basic proteins, indicating that these membrane proteins are unlikely to be synthesized as substantially larger precursor molecules. The presence of the specific mRNA species on both free and membrane-bound polyribosomes is compatible with the extrinsic location of the myelin basic proteins on the cytoplasmic surface of the myelin membrane.  相似文献   

11.
ISOLATION OF PURIFIED BASIC PROTEIN FROM HUMAN BRAIN   总被引:5,自引:0,他引:5  
—A simplified method for the isolation of an encephalitogenic basic protein from myelin is described. The basic polypeptide is easily extracted from the interfacial protein which separates when chloroform-methanol extracts of myelin are treated with a synthetic upper phase containing citrate. Evidence is presented for the purity and identity of the protein. The disc polyacrylamide gel electrophoretic pattern of this protein was consistent with a high degree of homogeneity.  相似文献   

12.
A Gow  D J Winzor  R Smith 《Biochemistry》1987,26(4):982-987
The interaction of myristoyllysophosphatidylcholine with bovine myelin basic protein at pH 7.4 and 4.5, I = 0.48, has been investigated by a recycling partition equilibrium technique with Bio-Gel P-2 as the gel phase. Important points to emerge from this direct binding study are that it is a monomeric (not micellar) amphiphile that binds to myelin basic protein, that the amphiphile binds preferentially to the monomeric form of myelin basic protein, that this binding to monomer is highly cooperative, that the similarity of binding behavior in the two environments tested is consistent with the dominance of a hydrophobic contribution to the protein-amphiphile interaction, and that the self-association of myelin basic protein in the presence of phospholipid [Smith, R. (1982) Biochemistry 21, 2697-2701] must reflect the aggregation of a protein-amphiphile complex(es) coupled with concomitant release of some lipid. These findings are then related to earlier nuclear magnetic resonance and circular dichroism studies in which the results were interpreted on the basis that myelin basic protein bound preferentially to micellar phospholipid.  相似文献   

13.
A technique has been outlined for identification of myelin basic proteins in mixtures of CNS proteins. Myelin basic proteins can be recognized easily by high cathodic mobility at low pH, a unique electrophoretic pattern exhibited at high pH and a characteristic colour when complexed with Amido black. The major protein extracted at pH 3·0 from either brain or spinal cord is myelin basic protein. In the low pH electrophoretic pattern of these extracts it is the most conspicuous component and the component migrating farthest cathodically; it does not appear in comparable electrophoretic patterns of liver extracts. Guinea pig myelin basic protein appears as a single dense blue-green band in low pH electrophoretic patterns, in contrast to the other proteins which are stained greyish-blue or greyish-purple by Amido black. The pattern of rat myelin basic protein is similar except that it consists of a pair of dense blue-green bands. A third characteristic which facilitates the identification of myelin basic proteins in mixtures is a considerable cathodic mobility and electrophoretic heterogeneity at pH 10·6. Most other basic CNS proteins barely penetrate the gel at this pH. We have also examined in detail the behaviour of two other components of pH 3·0 extracts which migrate close to myelin basic protein at low pH. Both are present in pH 3·0 extracts of liver and brain but not of spinal cord, and both stain grey instead of blue-green, a characteristic which readily distinguishes them from myelin basic protein. Neither of these components affects the characteristic pattern of microheterogeneity observed in high pH electrophoretograms of myelin basic proteins. One of these components has been purified and tentatively identified as lysine-rich histone F1.  相似文献   

14.
Mice ranging in age from 16 to 44 days were injected intracerebrally with 3H-leucine, and incorporation into total brain proteolipids and the myelin proteolipid protein was measured. All proteolipids were isolated from whole brain by ether precipitation and separated into their individual components by SDS polyacrylamide gel electrophoresis. Two major proteolipids with apparent molecular weights of 20,700 and 25,400 were observed in these preparations, and their proportion increased over the developmental period examined. A Ferguson plot analysis comparing these proteins with those of isolated myelin showed that the 25,400-dalton proteolipid component from whole brain was the myelin proteolipid protein. Rates of incorporation of 3H-leucine into total brain proteolipids peaked at 22 days of age. Synthesis of the myelin proteolipid protein increased rapidly to a maximum value at 22 days and decreased rather slowly until at 44 days it was about 83% of its maximum rate of synthesis. The data indicate that the developmental pattern of synthesis of the myelin proteolipid protein is unlike that of the myelin basic proteins. Synthesis of the major myelin proteins is developmentally asynchronous in that peak synthesis of the myelin proteolipid appears to occur several days later than the basic proteins. In addition, it maintains its maximum rate of synthesis over a longer period of time than do the basic proteins.  相似文献   

15.
Myelin sheath is a lipid-rich membrane, consisting of 70% lipid and 30% proteins, that is involved in physiological and pathological processes. For this reason its protein composition has been often investigated, principally by two-dimensional electrophoresis; however, the consistent lipid content makes it difficult to obtain good proteins separation. To improve the resolution of myelin proteins in a denaturing monodimensional gel electrophoresis, we examined several mixtures for the denaturation of the sample, utilizing different detergents and reducing agents. The definition of the protein pattern was analyzed by both “Blue Silver” Coomassie staining and Western Blot analysis against myelin basic protein, one of the most represented myelin proteins. The best resolution is observed when the sample was incubated with a mixture containing 1.25% dithiothreitol, 4 M urea, and 1% dodecyl maltoside or 1 % 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate, prior to addition of denaturing agents. In conclusion, this work describes a novel method to improve the separation of myelin proteins in a monodimensional gel electrophoresis. It may be also useful for investigating other lipid-rich samples.  相似文献   

16.
—We studied the incorporation of radioactivity into individual proteins of myelin by sodium dodecyl sulfate polyacrylamide gel electrophoresis after the injection of [3H]tryptophan into the right eye of developing rabbits. We found that the specific activity of basic protein (c.p.m./mg of basic protein) and the specific activity of DM-20 and proteolipid protein (c.p.m./mg total myelin protein applied to the gel) did not approach the ratio predicted by decussation of the fibres of the rabbit optic nerve. The specific activity of Wolfgram protein, however, approached an expected ratio of 15:1. We therefore concluded that myelin basic protein, DM-20 and proteolipid protein were probably not synthesized in retinal ganglion cells.  相似文献   

17.
Two major glycoproteins of bovine peripheral nerve myelin were isolated from the acid-insoluble residue of the myelin by a procedure involving delipidation with chloroform/methanol (2:1, v/v) and chromatography on Sephadex G-200 column with a buffer containing sodium dodecyl sulfate. The separation patterns of the proteins on the gel were affected considerably by the dodecyl sulfate concentration in the elution buffer. At above 2% dodecyl sulfate concentration in the elution buffer, the glycoproteins could be separated clearly on the gel and were purified. The purified proteins, the BR protein (mol. wt. 28 000) and the PAS-II protein (mol. wt. 13 000), were homogeneous on dodecyl sulfate-polyacrylamide gel electrophoresis. The NH2-terminal amino acids of the BR and the PAS-II proteins were isoleucine and methionine, respectively. The BR protein contained glucosamine, mannose, galactose, fucose and sialic acids and the PAS-II protein contained glucosamine, mannose, galactose, fucose and glucose. Neither the BR protein nor the PAS-II were a glycosylated derivative of a basic protein of bovine peripheral nerve myelin, a deduction based on the results of amino acid analysis. The two major glycoproteins were observed commonly in the peripheral nerve myelin of cows, pigs, rabbits and guinea pigs, using dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

18.
—A developmental study of the lipid and protein composition of human CNS myelin was undertaken. The relative concentrations of the major lipid classes, cholesterol, glycolipids and phospholipids exhibited little change except for a modest decrease in the concentration of the phospholipids. In contrast to the total phospholipids, marked variations in the relative concentrations of individual phospholipids were found. Sphingomyelin increased over two-fold, and phosphatidyl choline decreased to almost half its original concentration. While the concentration of total myelin protein remained constant during maturation, variations in the concentrations of individual proteins were observed. Basic protein constituted 8·5 per cent of the total myelin proteins in the newborn brain and increased to about 30 per cent of the protein in the older ages. The concentrations of proteolipid protein and DM-20 seemed to increase with age, while the relative amounts of high molecular weight proteins decreased. The presence of myelin basic protein in newborn human brain was confirmed by electrophoretic studies involving several different polyacrylamide gel systems and by immunodiffusion experiments which showed a reaction of identity between a constituent present in the fraction containing the presumptive myelin basic protein and authentic myelin basic protein isolated from adult human brain.  相似文献   

19.
Uridine Transport and Metabolism in the Central Nervous System   总被引:4,自引:2,他引:2  
Myelin and myelin-containing (P3) fractions were prepared from human white matter by discontinuous sucrose gradient centrifugation. The myelin isolated from each of the fractions of different densities was morphologically and biochemically distinct. Light myelin fractions consisted of compact, multilamellar myelin, whereas the denser fractions consisted predominantly of loose myelin with fewer lamellae. The amounts of both basic protein and lipophilin (proteolipid protein) were reduced in the denser fractions. In contrast, the high-molecular-weight components were elevated in the dense fractions. The lipid composition was similar in all the fractions studied. Analysis of basic protein by gel electrophoresis at pH 10.6 revealed differences in basic protein microheterogeneity among the fractions. The light myelin fraction was enriched in the more positively charged basic protein components (components 1, 2, and 3), whereas these components were reduced in the denser fractions. Myelin in the dense fractions was enriched in the more modified forms of basic protein (components 6, 7, and 8). The pattern of microheterogeneity was different for basic protein isolated from myelins of a 2-year-old and an adult brain; the former showed fewer components and mainly the most cationic species. On the other hand, the pattern of microheterogeneity of basic protein isolated from the different density gradient fractions was similar for both ages.  相似文献   

20.
Myelin isolated from goldfish brain shows a multilamellar structure with a major dense line and two intraperiod lines. Sodium dodecyl sulfate gel electrophoresis revealed that the protein profile of goldfish brain myelin is distinctly different from that of rat brain myelin. No protein migrating to the position of proteolipid protein or DM-20 was seen in goldfish myelin. Goldfish acclimated to 5 degrees, 15 degrees, and 30 degrees C showed no qualitative differences in myelin proteins. The 13.5 kD protein in goldfish brain myelin and brain homogenate was intensely immunostained with the antiserum to human basic protein by the immunoblot technique. In contrast, none of the proteins of goldfish myelin were immunostained with antiproteolipid protein serum; however, both proteolipid protein and DM-20 of rat brain myelin were immunostained. The significance of the synthesis of myelin proteins by astrocytes in the goldfish brain is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号