首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-yr-old loblolly pine seedlings of two half-sib families, grown in sand, were fertilized three times per week with nutrient solution containing 20 μg/ml (low) or 80 μg/ml (high) nitrogen. Nitrogen concentration in the nutrient solution was either constant throughout the experiment, or interehanged after the inoculation of stems or shoots with Fusarium subglutinans, 55 days after initiation of fertilization. Growth was suppressed by a weekly excision of shoots branching from the stem apex. Either high nitrogen nutrition or shoot excision generally enhanced canker elongation on stem inoculated plants; the combination of both was extremely conducive for disease development. With intact plants of family 8–68, interchange of pre-inoculation low nitrogen nutrition with high nitrogen after inoculation enhanced canker elongation and rate of wilt. Nitrogen content varied in wood, bark and needles, as well as with time intervals, but was consistently in accordance with nitrogen level in the nutrient solution. In shoot excised plants, nitrogen content was higher than in the respective treatment without shoot excision. The higher nitrogen nutrient accelerated disease development on inoculated shoots, compared to low nitrogen, on both pine families. With respective treatments, stem cankers were larger and rates of shoots exhibiting lesions or wilt were higher on plants of family 8–68 than on 8–61. It is postulated that the disease enhancing effect associated with higher nitrogen content in stem tissues results from an increased nitrogen availability to the pathogen.  相似文献   

2.
Phaseolus vulgaris grown under various environmental conditions was used to assess long-term acclimatization of xylem structural characteristics and hydraulic properties. Conduit diameter tended to be reduced and 'wood' density (of 'woody' stems) increased under low moisture ('dry'), increased soil porosity ('porous soil') and low phosphorus ('low P') treatments. Dry and low P had the largest percentage of small vessels. Dry, low light ('shade') and porous soil treatments decreased P50 (50% loss in conductivity) by 0.15-0.25 MPa (greater cavitation resistance) compared with 'controls'. By contrast, low P increased P50 by 0.30 MPa (less cavitation resistance) compared with porous soil (the control for low P). Changes in cavitation resistance were independent of conduit diameter. By contrast, changes in cavitation resistance were correlated with wood density for the control, dry and porous soil treatments, but did not appear to be a function of wood density for the shade and low P treatments. In a separate experiment comparing control and porous soil plants, stem hydraulic conductivity (kh), specific conductivity (ks), leaf specific conductivity (LSC), total pot water loss, plant biomass and leaf area were all greater for control plants compared to porous soil plants. Porous soil plants, however, demonstrated higher midday stomatal conductance to water vapour (gs), apparently because they experienced proportionally less midday xylem cavitation.  相似文献   

3.
4.
Downwardly-growing grapevine shoots have smaller and more frequent vessels than upwardly-growing ones and, as a consequence, a lower hydraulic conductivity. Here, grapevine (Vitis vinifera L.) shoot growth orientation was manipulated to test whether downward shoot orientation negatively affects vessel growth in the apex via a shortage of water and nutrients. The orientation of the central vine shoot portion was inverted by two consecutive 135 degrees bends, resulting in double-bent N-shaped vines; the central downward shoot portion was of different lengths in the experimental treatments to induce increasing reductions of shoot conductivity. These treatments reduced shoot conductivity and water flow, but had no effects on vessel development and frequency in the apex. In a second experiment, auxin concentration was assessed in shoots of upwardly- and downwardly-growing plants. IAA concentration at the apical internodes was higher in downwardly-oriented shoots than in shoots growing upwards. In addition, a higher density and a lower vessel diameter were observed in the lower, than the upper side, of the downwardly-oriented shoot, suggesting increased accumulation of auxin in the lower side. These results suggest that the downward orientation induces accumulation of auxin in the apex, which in turn affects the density and the size of the xylem vessels, causing reduction of hydraulic conductivity.  相似文献   

5.
This paper discusses interspecific differences and phenotypic responses to nitrogen supply in various root parameters of five perennial grasses from contrasting habitats. The following root parameters were studied: root:shoot ratio, specific root length, specific root area, mean root diameter, frequency of fine roots, and the length and density of root hairs. Significant between-species variation was found in all of these features. Species from fertile sites had higher root:shoot ratios at high nitrogen supply than species from infertile habitats. All species growing at low nitrogen supply showed a significant increase in root:shoot ratio. Specific root length, specific root area, mean root diameter and frequency of fine roots were not affected significantly by nitrogen supply. Species from infertile sites responded to low nitrogen supply by a significant increase in root hair length and root hair density.  相似文献   

6.
氮磷肥配施对苦荞根系生理生态及产量的影响   总被引:2,自引:0,他引:2  
以苦荞品种‘迪庆’为材料,在盆栽试验条件下,研究了氮(纯氮用量分别为0g/kg、0.1g/kg、0.2g/kg)、磷(P2O5用量分别为0.1g/kg和0.2g/kg)配施对苦荞根系生长、生理指标及其产量的影响,旨在为黄土高原苦荞高产优质栽培提供理论依据。结果表明:(1)在相同施磷量条件下,苦荞幼苗的株高、茎粗、茎叶干重、主根长、根表面积、根系体积、根系直径、根系干重以及壮苗指数等均随施氮量的增加而呈先升后降的趋势,但根冠比随施氮量的增加而呈先降后升的趋势;叶片叶绿素含量以及根系活力、酸性磷酸酶(Apase)活性、可溶性蛋白含量和植株氮积累量随施氮量的增加呈抛物线变化趋势,根系硝酸还原酶(NR)活性和植株氮含量随施氮量的增加而增加;而根系可溶性糖含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、丙二醛(MDA)含量和游离脯氨酸含量等指标均随施氮量的增加而呈先降后升的趋势,0.1g/kg施氮处理各指标均显著低于其他处理;成熟期单株粒重、百粒重随施氮量的增加呈先升后降的趋势,0.1g/kg施氮处理各指标均显著高于其他处理。(2)在相同施氮量条件下,随着施磷量的增加,苦荞根系酸性磷酸酶(Apase)活性、SOD活性、POD活性、MDA含量、可溶性糖含量、可溶性蛋白以及游离脯氨酸含量等指标均降低,其余各指标则呈增加趋势。(3)无论施磷量条件如何,0.1g/kg的施氮处理下苦荞产量最高,与其他施氮处理相比,在低磷和高磷处理下的增产幅度分别为7.04%~37.40%和14.73%~68.26%;在施氮量一定的情况下,高磷处理比低磷处理增产15.96%~42.00%。(4)在该试验条件下,适当的氮磷肥配施表现出了明显的正加和效应,但过量施肥也有可能导致增产幅度下降,中氮高磷(施纯N量0.1g/kg,施P2O5量0.2g/kg)配施效果最优。  相似文献   

7.
Aquatic plants anchored in streams are under pressure from various constraints linked to the water flow and display strategies to prevent their damage or destruction. We assume that the responses of aquatic plants to fast‐water flow are a manifestation of a trade‐off consisting in either maximizing the resistance to damage (tolerance strategy) in minimizing the hydrodynamic forces (avoidance strategy), or both. Our main hypothesis was that Potamogeton alpinus demonstrate the avoidance strategy. We analyzed architecture traits of the modules of this clonal plant from slow‐ and fast‐flowing streams. In fast‐flowing waters, the avoidance strategy of P. alpinus is reflected by the following: (1) the presence of floating leaves that stabilize the vertical position of the stem and protect the inflorescence against immersion; (2) elongation of submerged leaves (weakens the pressure of water); and (3) shoot diameter reduction and increase in shoot density (weakens the pressure of water, increases shoot elasticity), and by contrast in slow‐water flow include the following: (4) the absence of floating leaves in high intensity of light (avoiding unnecessary outlays on a redundant organ); (5) the presence of floating leaves in low intensity of light (avoidance of stress caused by an insufficient assimilation area of submerged leaves).  相似文献   

8.
Decline of charophytes during eutrophication: comparison with angiosperms   总被引:10,自引:0,他引:10  
1. Charophytes have disappeared from several enriched lakes in Scania (southern Sweden) since the 1940s. Poor light conditions, rather than a toxic effect of phosphorus or negative impact of fish, are the most probable reason for this decline. 2. Small species of charophytes (shoot diameter 0.5–1.0 mm), which are able to form dense, low mats, still occur in eutrophic lakes with high phosphorus concentrations, but are restricted to areas of shallow water. In contrast, large species (shoot diameter 1–4 mm) have totally disappeared from the most turbid lakes. I suggest that these species are unable to grow in very shallow water because of damage by ice and wave action. 3. Maximum depth distribution (ze) and Secchi depth (D) were measured in Scanian lakes for both charophytes and angiosperms and combined with data obtained from Chambers & Kalff (1985). According to the combined data, zc and D are closely correlated with each other for both angiosperms and charophytes. 4. The zc of charophytes is higher than zc of angiosperms in clear lakes but lower in turbid lakes. Higher zc of angiosperms in the most turbid lakes is explained by special adaptations of these species to poor light availability (shoot elongation, canopy formation, rapid growth during spring).  相似文献   

9.
Senescence of shoot apices of Pisum sativum L. ‘Alaska’ as measured by cessation of stem elongation was delayed by removal of flowers. Analyses of total RNA, nitrogen, protein and inorganic phosphorus in shoot tips of deflowered and control (flower- and fruit-bearing) plants throughout ontogeny revealed that the levels of all these metabolites declined during senescence. Also throughout ontogeny shoot tips of control and deflowered plants were compared with respect to their ability to enzymically degrade RNA and to take up and incorporate P32-orthophosphate into RNA. The specific activity of ribonuclease increased as senescence progressed while the absolute activity appeared to decrease in correlation with a decrease in total nitrogen content. Compared with nonsenescing shoot tips, senescing shoot tips accumulated less P32 but exhibited an apparent enhancement of P32 incorporation into RNA, which was attributed to a reduction in the endogenous phosphorus pool causing a smaller dilution of the accumulated P32. It is concluded that decreases in the levels of RNA, protein and inorganic phosphorus and in the tran-spirational uptake of nutrients are factors correlated with senescence of the shoot apex.  相似文献   

10.
Commercial nursery practices usually fail to promote mycorrhization of interior Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco] seedlings in British Columbia, which may account for their poor performance following planting in the field. We tested the effects of four nursery cultivation factors (nitrogen fertilization, phosphorus fertilization, watering, and soil aeration) and field soil addition on mycorrhization, survival, growth, and biomass allocation of interior Douglas-fir seedlings in a series of greenhouse experiments. Where field soil was added to the growing medium, mycorrhization and root/shoot ratios were maximized at lower levels of mineral nutrient application and aeration. Where field soil was not added, mycorrhization was negligible across all fertilization and aeration treatments, but root/shoot ratio was maximized at lower levels of mineral nutrients and the highest level of aeration. Regardless of whether field soil was added, intermediate levels of soil water resulted in the best mycorrhizal colonization and root/shoot ratios. However, field soil addition reduced seedling mortality at the two lowest water levels. A cluster analysis placed ectomycorrhizal morphotypes into three groups (Mycelium radicis-atrovirens Melin, Wilcoxina, and mixed) based on their treatment response, with all but two morphotypes in the mixed group whose abundance was maximized under conditions common to advanced seedling establishment. For maximal mycorrhization and root development of interior Douglas-fir seedlings, nurseries should minimize addition of nitrogen and phosphorus nutrients, maximize aeration, provide water at moderate rates, and, where possible, add small amounts of field soil to the growing medium.  相似文献   

11.
调整叶性状和生物量分配格局是植物适应环境变化的主要途径, 研究车桑子(Dodonaea viscosa)幼苗生物量分配与叶性状对氮磷浓度的响应对认识车桑子在氮磷浓度变化下的适应策略具有重要意义。该研究通过砂培法, 测定不同氮浓度(3、5、15、30 mmol·L-1)与不同磷浓度(0.25、0.5、1、2 mmol·L-1)下车桑子幼苗的生长、生物量分配、叶性状的响应特征及其相互关系。结果表明: 高浓度氮(30 mmol·L-1)促进了车桑子幼苗生长、叶片氮含量和生物量积累, 其余氮添加条件(3、5、15 mmol·L-1)下车桑子幼苗各性状无显著差异, 但相比高氮水平, 其生物量积累和叶片氮含量显著降低, 根冠比和氮利用效率显著增加。随着磷添加浓度的增加, 车桑子幼苗生物量显著增加, 低磷条件(0.25、0.5 mmol·L-1)限制了车桑子幼苗生长和生物量积累, 其根冠比和磷利用效率均没有发生显著变化, 但比叶面积和叶/茎生物量比例显著增加, 叶干物质含量显著降低。氮处理下, 叶片氮含量与根冠比显著负相关; 磷处理下, 叶片氮含量与比叶面积显著正相关。同时, 氮处理下, 车桑子幼苗株高、基径、总生物量等生长性状均与根冠比显著负相关, 与叶片氮含量显著正相关, 表明根冠比和叶片氮含量的调整在车桑子适应氮限制中发挥重要作用; 而磷处理下, 株高、基径、总生物量与比叶面积显著负相关, 与叶干物质含量显著正相关, 表明叶片结构性状的调整在车桑子适应低磷环境中具有重要意义。该研究表明, 车桑子幼苗生物量分配和叶性状及性状间的权衡策略对氮、磷的响应具有明显差异性, 在今后的研究中, 应关注氮和磷对植物性状影响的差异性。  相似文献   

12.
Dicotyledonous woods from the Upper Cretaceous of Southern IllinoiS. Five species of fossil dicotyledonous wood are described from an Upper Cretaceous (Maestrichtian; locality in Alexander County, IllinoiS. U.S. A. Paraquercimum cretaceum has structure similar to the Fagaceae (evergreen Oak- Lithocarpus ) and Casuarinaceae and represents the earliest known occurrence of this structural type (large solitary pores and uniseriate and large multiseriale rays). Paraphyltanthoxyhin illirioisense and Icacinoxylon alternipunctata are species of genera represented at other Cretaceous and Early Tertiary localities In large diameter trees. Parabombacaceoxylon magniporosum has large diameter pores and scalariform perforation plates, a combination of characters that is extremely rare in the extant flora. Paraapocynaceoxylon barghoorni has a combination of characters represented in extant Apocynaceae. These five species lack growth rings, have high vulnerability indices (mean vessel diameter divided by mean number of vessels per square millimeter, and a relatively high proportion of ray parenchyma. They lack specialized wood anatomical characters, and a compilation of vessel element lengths in these and other Cretaceous woods indicates that short vessel elements (a derived character) were less frequent in the Cretaceous than in extant dicotyledonous trees.  相似文献   

13.
The relationship of selected wood anatomical characters of NepaleseRhododendron with stem diameter, plant height, altitude, and plant form was investigated. We studied one to three specimens each of 26 species: five species each of trees and subtrees I, three species of subtrees II, and 13 species of shrubs. Multiple regression analysis and actual distribution of character values show that pore characters and multiseriate ray ratio have a stronger correlation with stem diameter than altitude; that pore density, vessel element length, fiber-tracheid length, and multiseriate ray density and width are equally related to altitude and stem diameter, or to altitude and plant height; and that bar number, and multiseriate ray area and height have a stronger connection with altitude. Among the characters, average pore area is most strongly correlated with stem diameter and increases exponentially as diameter increases. For wood structure of NepaleseRhododendron, 17 to 63 % of the variation is affected by non-anatomical factors. The general trends in wood structure of NepaleseRhododendron show that trees and subtrees form one continuous unit whereas shrubs form another that often has wider ranges of variation.  相似文献   

14.
《植物生态学报》2021,44(12):1247
调整叶性状和生物量分配格局是植物适应环境变化的主要途径, 研究车桑子(Dodonaea viscosa)幼苗生物量分配与叶性状对氮磷浓度的响应对认识车桑子在氮磷浓度变化下的适应策略具有重要意义。该研究通过砂培法, 测定不同氮浓度(3、5、15、30 mmol·L-1)与不同磷浓度(0.25、0.5、1、2 mmol·L-1)下车桑子幼苗的生长、生物量分配、叶性状的响应特征及其相互关系。结果表明: 高浓度氮(30 mmol·L-1)促进了车桑子幼苗生长、叶片氮含量和生物量积累, 其余氮添加条件(3、5、15 mmol·L-1)下车桑子幼苗各性状无显著差异, 但相比高氮水平, 其生物量积累和叶片氮含量显著降低, 根冠比和氮利用效率显著增加。随着磷添加浓度的增加, 车桑子幼苗生物量显著增加, 低磷条件(0.25、0.5 mmol·L-1)限制了车桑子幼苗生长和生物量积累, 其根冠比和磷利用效率均没有发生显著变化, 但比叶面积和叶/茎生物量比例显著增加, 叶干物质含量显著降低。氮处理下, 叶片氮含量与根冠比显著负相关; 磷处理下, 叶片氮含量与比叶面积显著正相关。同时, 氮处理下, 车桑子幼苗株高、基径、总生物量等生长性状均与根冠比显著负相关, 与叶片氮含量显著正相关, 表明根冠比和叶片氮含量的调整在车桑子适应氮限制中发挥重要作用; 而磷处理下, 株高、基径、总生物量与比叶面积显著负相关, 与叶干物质含量显著正相关, 表明叶片结构性状的调整在车桑子适应低磷环境中具有重要意义。该研究表明, 车桑子幼苗生物量分配和叶性状及性状间的权衡策略对氮、磷的响应具有明显差异性, 在今后的研究中, 应关注氮和磷对植物性状影响的差异性。  相似文献   

15.
The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.  相似文献   

16.
Summary We tested the hypothesis that mycorrhizal infection benefits wild plants to a lesser extent than cultivated plants. This hypothesis stems from two observations: (1) mycorrhizal infection improves plant growth primarily by increasing nutrient uptake, and (2) wild plants often possess special adaptations to soil infertility which are less pronounced in modern cultivated plants. In the first experiment, wild (Avena fatua L.) and cultivated (A. sativa L.) oats were grown hydroponically at four different phosphorus levels. Wild oat was less responsive (in shoot dry weight) to increasing phosphorus availability than cultivated oat. In addition, the root: shoot ratio was much more plastic in wild oat (varying from 0.90 in the low phosphorus solution to 0.25 in the high phosphorus solution) than in cultivated oat (varying from 0.44 to 0.17). In the second experiment, mycorrhizal and non-mycorrhizal wild and cultivated oats were grown in a phosphorus-deficient soil. Mycorrhizal infection generally improved the vegetative growth of both wild and cultivated oats. However, infection significantly increased plant lifespan, number of panicles per plant, shoot phosphorus concentration, shoot phosphorus content, duration of flowering, and the mean weight of individual seeds in cultivated oat, while it had a significantly reduced effect, no effect, or a negative effect on these characters for wild oat. Poor positive responsiveness of wild oat in these characters was thus associated with what might be considered to be inherent adaptations to nutrient deficiency: high root: shoot ratio and inherently low growth rate. Infection also increased seed phosphorus content and reproductive allocation.  相似文献   

17.
为探讨树木结构与功能的关系,对华南地区常见8种树木边材的导管特征进行观察,并利用Granier热扩散探针法测量干、湿季树干的液流密度,分析导管特征与树干液流的关系。结果表明,除红锥(Castanopsis hystrix)有两种导管外,大叶相思(Acacia auriculaeformis)、荷木(Schima superba)、火力楠(Michelia macclurei)、藜蒴(C.fissa)、马占相思(A.mangium)、柠檬桉(Eucalyptus citriodora)、尾巨桉(E.urophylla×E.grandis)的导管类型单一。导管特征在种间存在明显差异,且导管长度、密度和孔径之间存在明显相关性,它们与标准化的边材面积呈现显著相关。湿季液流最大值与导管特征无明显相关性,但整树最大蒸腾速率与导管特征呈显著相关;树木的日蒸腾量与导管特征也有明显相关性。因此,树木的液流速率并不受树干的导管影响;而树干的导管孔径与边材面积间的负相关权衡机制,可以降低树种间由于导管孔径差异引起的树干的水分输送速率的差异性。  相似文献   

18.
Summary The purpose of this study was to examine the growth response of Bouteloua gracilis, with and without the vescular-arbuscular mycorrhiza (VAM), Glomus fasciculatus, to varying levels of phosphorus and nitrogen (as NH + 4 ) and to determine whether nitrogen and phosphorus levels influence VAM establishment. Bouteloua gracilis was grown in 225 g of soil in a factorial experiment combining four levels of ammonium nitrogen (4, 30, 60, and 126 g/g), four levels of phosphorus (3, 7, 12, and 22 g/g), and with VAM spores or no spores. Bouteloua gracilis showed enhanced growth with increased nutrients over the entire range of experimental amendments. Shoot nitrogen concentration for all plants ranged from an average of 0.73% at the low amendment level to 1.61% at the high level, whereas shoot total averages ranged from 2.43 mg at the low amendment to 16.4 mg at the high amendment. Mean shoot phosphorus concentrations ranged from 0.109% at the low amendment level to 0.150% at the high amendment, while totals averaged 5.29 mg at the low amendment and 11.8 mg at the high amendment level. Infected plants were consistently smaller than uninfected plants. This reduction was significant at high nitrogen-low phosphorus, where percent infection was highest (71%). At low nitrogen levels, moderate infection (17%) was established at all phosphorus levels. No infection occurred when both nitrogen and phosphorus levels were high. The lack of a positive nutrient or biomass response to VAM establishment is contrary to most published reports, but is similar to a lack of response shown with certain grasses and other plants. It is possible that the parasitic nature of the response to infection represents the early phase of infection.  相似文献   

19.
Photosynthetic characteristics and chloroplast ultrastructure of Cyclotella meneghiniana Kütz. were quantified while the organism was simultaneously adjusting to light and nutrient stress. Cells were grown in batch culture at either low or high light intensity on medium with a nitrogen/phosphorus molar ratio of 2:1 as a control, or with nitrogen or phosphorus deleted from the medium to create nutrient deficiencies. Analysis of variance indicated that light intensity, nutrient deficiency and duration of nutrient deficiency all had significant effects on cell growth, chlorophyll (Chl) concentration/cell, cellular fluorescence capacity (CFC), chloroplast volume and thylakoid surface density. Because interactions existed among nutrient deficiency, extent of nutrient deficiency, and light intensity, all three must be considered together in order to describe accurately the physiology and chloroplast ultrastructure of the diatom. Significant correlations were found between the Chl/cell or CFC/cell and chloroplast volume and thylakoid surface density. Through an increase in Chi concentration, chloroplast volume and thylakoid surface density, the cells successfully adapted to the conditions of low light intensity even while under nutrient stress. In contrast, less Chl/cell, smaller chloroplast volume and less thylakoid surface density were found at high light intensity.  相似文献   

20.
Festuca arundinaceae was grown at high and low wind-speed attwo levels of either soil phosphorus or soil nitrogen. At increasedwind-speed, mean relative growth rate and leaf extension ratewere reduced when plants were grown with high nutrient concentrationsand further reduced when phosphorus or nitrogen stress was imposedon the plants. Transpiration was increased at high wind-speedexcept under conditions of phosphorus stress, where the ratewas actually decreased. Relationships between water stress,wind and nutrient status are discussed, especially in relationto the possible role of phosphorus stress in causing sclerophylly. Festuca arundinacea Schreb., relative growth rate, water stress, wind, nitrogen, phosphorus, sclerophylly  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号