首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
BALB/c mice are predisposed to developing spontaneous mammary tumors, which are further increased in a p53 heterozygous state. C57BL/6J mice are resistant to induced mammary tumors and develop less than 1% mammary tumors in both wild-type and p53 +/− states. To map modifiers of mammary tumorigenesis, we have established F1 and F2 crosses and backcrosses to BALB/cJ (N2-BALB/cJ) and C57BL/6J (N2-C57BL/6J) strains. All cohorts developed mammary carcinomas in p53 +/− females, suggesting that multiple loci dominantly and recessively contributed to mammary tumorigenesis. We mapped two modifiers of mammary tumorigenesis in the BALB/cJ strain. Mtsm1 (mammary tumor susceptibility modifier), a dominant-acting modifier, is located on chromosome 7. Mtsm1 is suggestive for linkage to mammary tumorigenesis (p = 0.001). We have analyzed the Mtsm1 region to locate candidate genes by comparing it to a rat modifier region, Mcs3, which shares syntenic conservation with Mtsm1. Expression data and SNPs were also taken into account. Five potential candidate genes within Mtsm1 are Aldh1a3, Chd2, Nipa2, Pcsk6, and Tubgcp5. The second modifier mapped is Mtsm2, a recessive-acting modifier. Mtsm2 is located on chromosome X and is significantly linked to mammary tumorigenesis (p = 1.03 × 10−7). Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

4.
Tumor suppressor genes are generally viewed as being recessive at the cellular level, so that mutation or loss of both tumor suppressor alleles is a prerequisite for tumor formation. The tumor suppressor gene, p53, is mutated in approximately 50% of human sporadic cancers and in an inherited cancer predisposition (Li-Fraumeni syndrome). We have analyzed the status of the wild-type p53 allele in tumors taken from p53-deficient heterozygous (p53+/-) mice. These mice inherit a single null p53 allele and develop tumors much earlier than those mice with two functional copies of wild-type p53. We present evidence that a high proportion of the tumors from the p53+/- mice retain an intact, functional, wild-type p53 allele. Unlike p53+/- tumors which lose their wild-type allele, the tumors which retain an intact p53 allele express p53 protein that induces apoptosis following gamma-irradiation, activates p21(WAF1/CIP1) and Mdm2 expression, represses PCNA expression (a negatively regulated target of wild-type p53), shows high levels of binding to oligonucleotides containing a wild-type p53 response element and prevents chromosomal instability as measured by comparative genomic hybridization. These results indicate that loss of both p53 alleles is not a prerequisite for tumor formation and that mere reduction in p53 levels may be sufficient to promote tumorigenesis.  相似文献   

5.
6.
Analysis of the skeletal phenotypes caused by the genetic inactivation of individual Bmps, along with the study of their expression patterns, suggest possible functional redundancy of these molecules. To investigate the effect on skeleton development of the combined absence of some Bmp genes expressed in the same areas, we have intercrossed heterozygous Bmp7 mice with Bmp2+/−, Bmp4+/−, or Bmp5+/− animals. Bmp2/7 and Bmp5/7 double heterozygous animals do not present with any abnormalities. In contrast, Bmp4/7 double heterozygotes develop minor defects in two restricted areas of the skeleton, the rib cage, and the distal part of the limbs. In the ribs, Bmp4 and Bmp7 seem to act in the same pathway to assure proper guidance of mesenchymal condensations of the ribs extending toward the sternum. In the limbs, these molecules appear to play a similar role in controlling digit number, possibly through induction of apoptosis in the interdigital and anterior mesenchyme. Dev. Genet. 22:340–348, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
8.
Werner's syndrome (WS) is a human disease with manifestations resembling premature aging. The gene defective in WS, WRN, encodes a DNA helicase. Here, we describe the generation of mice bearing a mutation that eliminates expression of the C terminus of the helicase domain of the WRN protein. Mutant mice are born at the expected Mendelian frequency and do not show any overt histological signs of accelerated senescence. These mice are capable of living beyond 2 years of age. Cells from these animals do not show elevated susceptibility to the genotoxins camptothecin or 4-NQO. However, mutant fibroblasts senesce approximately one passage earlier than controls. Importantly, WRN(-/-);p53(-/-) mice show an increased mortality rate relative to WRN(+/-);p53(-/-) animals. We consider possible models for the synergy between p53 and WRN mutations for the determination of life span.  相似文献   

9.
Oncogenic ras and p53 cooperate to induce cellular senescence   总被引:14,自引:0,他引:14       下载免费PDF全文
Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53(val135)) into p53-null mouse embryonic fibroblasts and examined cell proliferation and senescence in cells expressing p53, oncogenic Ras, or both gene products. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras or activated mek1 with p53 enhanced both p53 levels and activity relative to that observed for p53 alone and produced an irreversible cell cycle arrest that displayed features of cellular senescence. p19(ARF) was required for this effect, since p53(-/-) ARF(-/-) double-null cells were unable to undergo senescence following coexpression of oncogenic Ras and p53. Although the levels of exogenous p53 achieved in ARF-null cells were relatively low, the stabilizing effects of p19(ARF) on p53 could not explain the cooperation between oncogenic Ras and p53 in promoting senescence. Hence, enforced p53 expression without oncogenic ras in p53(-/-) mdm2(-/-) double-null cells produced extremely high p53 levels but did not induce senescence. Taken together, our results indicate that oncogenic activation of the MAP kinase pathway in murine fibroblasts converts p53 into a senescence inducer through both quantitative and qualitative mechanisms.  相似文献   

10.
11.
A single, i.p. dose of bleomycin was administered simultaneously with [35S]methionine to 4-month-old p53 wild type (+/+) and p53 heterozygous (+/-) C57BL/6 mice. Following a period of 3.5 h from dosing, the bone marrow nuclei were examined by two-dimensional PAGE and fluorography for induction of stress proteins (sps). Eight sps ranging from 22000 to 100000 Mr were synthesized in p53+/- and p53+/+ mice following elicitation by bleomycin. No quantitative or qualitative differences were observed in sp expression in these two groups of animals. In a second experiment, three doses of retinoic acid were given i.p. to p53+/- and p53+/+ mice over a 36 h period. The p53 isoforms in bone marrow nuclei from these mice were analyzed by PAGE for incorporation of [35S]methionine following retinoic acid injections. Quantitative and qualitative alterations in p53 isotypes were substantially increased in p53+/+ as compared with p53+/- mice. The increased complexity in the synthesis patterns in both groups of dosed mice consisted of additional isoforms possessing more acidic isoelectric values. In an in vitro binding assay, individual p53 isoforms demonstrated varying degrees of association with sps 25a, 70i, 72c and 90 which was consistently greater in p53+/+ mice. Both the synthesis and binding of isoforms were greater in G1 than in S+G2 phase, in both groups of animals, reflecting a cell cycle regulated mechanism for these events. Collectively, these data implied that the synthesis and the binding characteristics of p53 isoforms with sps were enhanced in the p53+/+ mice relative to the p53+/- mouse; however, sp labeling was not affected by p53 genotype.  相似文献   

12.
p63 is the most recently discovered but most ancient member of the p53 family. In marked contrast to p53, p63 is highly expressed in embryonic ectoderm and in the basal, regenerative layers of many epithelial tissues in the adult. The p63-knockout mouse dies at birth and lacks limbs, epidermis, prostate, breast and urothelial tissues, apparently owing to the loss of stem cells required for these tissues. Significantly, several dominant human syndromes involving limb development and/or ectodermal dysplasia have been mapped to chromosome 3q27 and ultimately the gene encoding p63. The heterozygous p63mutations are distinct for each of the syndromes and are thought to act through both dominant-negative and gain-of-function mechanisms rather than a loss-of-function haploinsufficiency. The allele specificity of these syndromes offers unique molecular insights into the poorly understood actions of p63 in limb development, ectodermal-mesodermal interactions and stem cell maintenance.  相似文献   

13.
14.
15.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

16.
17.
The ARF and p53 tumor suppressors mediate Myc-induced apoptosis and suppress lymphoma development in E mu-myc transgenic mice. Here we report that the proapoptotic Bcl-2 family member Bax also mediates apoptosis triggered by Myc and inhibits Myc-induced lymphomagenesis. Bax-deficient primary pre-B cells are resistant to the apoptotic effects of Myc, and Bax loss accelerates lymphoma development in E mu-myc transgenics in a dose-dependent fashion. Eighty percent of lymphomas arising in wild-type E mu-myc transgenics have alterations in the ARF-Mdm2-p53 tumor suppressor pathway characterized by deletions in ARF, mutations or deletions of p53, and overexpression of Mdm2. The absence of Bax did not alter the frequency of biallelic deletion of ARF in lymphomas arising in E mu-myc transgenic mice or the rate of tumorigenesis in ARF-null mice. Furthermore, Mdm2 was overexpressed at the same frequency in lymphomas irrespective of Bax status, suggesting that Bax resides in a pathway separate from ARF and Mdm2. Strikingly, lymphomas from Bax-null E mu-myc transgenics lacked p53 alterations, whereas 27% of the tumors in Bax(+/-) E mu-myc transgenic mice contained p53 mutations or deletions. Thus, the loss of Bax eliminates the selection of p53 mutations and deletions, but not ARF deletions or Mdm2 overexpression, during Myc-induced tumorigenesis, formally demonstrating that Myc-induced apoptotic signals through ARF/Mdm2 and p53 must bifurcate: p53 signals through Bax, whereas this is not necessarily the case for ARF and Mdm2.  相似文献   

18.
The high mutation rates of retroviruses are a potential problem with retroviral vectors. We studied the mutation rates and spectra of p53 sequences transduced with a retroviral vector in a cancer gene therapy model. When p53-deficient H358 non-small cell lung cancer cells were treated with a retroviral vector carrying normal p53 cDNA, most of transduced cells were killed by apoptosis. However, a small number of clones escaped p53-mediated apoptosis. We examined the p53 cDNA structure in these resistant clones. PCR-based analysis showed that 88/102 clones had detectable mutations in p53, including gross rearrangements, deletions/insertions, and base substitutions. To study the mutation rate of the p53 sequence in all transduced clones, the retroviral vector containing the non-functional p53 gene and the Neo-resistant marker gene was introduced into H358 cells. Only one of 95 isolated clones showed a base substitution. These results indicate that the mutation rate of p53 is not particularly high, but there is a significant risk that cancer cells will resist p53 gene therapy as a result of retroviral replication errors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号