首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ramírez  C.  San Martín  C.  Oyarzún  A.  Figueroa  H. 《Plant Ecology》1997,130(2):101-109
The morphology of the 11 taxa of South American Nothofagus are compared. Thirty eight characteristics were taken into account: 12 from leaves, 3 from stipules, 3 from buds, 6 from cupules, 7 from fruits, 4 from petioles and 3 from male flowers. The data matrix, with average values of 100 measurements per taxon, was analyzed with multivariate statistical methods of classification and polar and spatial ordination. Five groups were established: The first one (Nothofagus obliqua, N. obliqua var. macrocarpa, N. leoni and N. alessandrii), with deciduous leaves, is adapted to mediterranean climatic conditions. The second groups (N. dombeyi, N. nitida and N. antarctica), with small leaves which are evergreen for the first two species and deciduous for the last, develops under temperate humid conditions typical of the Valdivian region. The three remaining groups correspond to isolated species with different requirements: N. glauca, has large deciduous leaves and colonizes the most xerophytic biotope that a Nothofagus in central Chile can tolerate. N. pumilio, with mid-sized deciduous leaves, is adapted to the cold and dry zones of the southern Andes. Finally, N. betuloides, with small evergreen leaves, grows in the cold/humid somewhat boggy conditions of the Magellanic region.  相似文献   

2.
An analysis was carried out on the length, diameter and number of leaves, and the ratios between these variables for current-year growth units (sibling growth units) derived from different nodes of previous-year growth units (parent growth units) of young Nothofagus dombeyi and Nothofagus pumilio trees. Changes in sibling growth unit length, diameter, and number of leaves with position on the parent growth unit were assessed. In both species, sibling-growth unit morphology varied according to both the axis type of the parent growth unit and the position of the sibling growth unit on its parent growth unit. For the largest parent growth units, the length, diameter and number of leaves of their sibling growth units decreased from distal to proximal positions on the parent growth unit. Distal sibling growth units had a more slender stem and longer internodes than proximal sibling growth units. Sibling growth units in equivalent positions tended to have a more slender stem for N. dombeyi than for N. pumilio. Long main-branch growth units of N. pumilio had longer internodes than those of N. dombeyi; the converse was true for shorter growth units. The growth unit diameter/leaf number ratio was consistently higher for N. pumilio than for N. dombeyi. Nothofagus pumilio axes would go through a faster transition from an 'exploring' morphology to an 'exploiting' morphology than N. dombeyi axes. Within- and between-species variations in growth unit morphology should be considered when assessing the adaptive value of the branching pattern of plants.  相似文献   

3.
BACKGROUND AND AIMS: Trees with a partial leaf-shedding pattern and other morphological features a priori considered intermediate between those of the deciduous Nothofagus antarctica (G. Forster) Oersted and the evergreen N. dombeyi (Mirb.) Oersted (Nothofagaceae) were found in natural stands. The hybridization between a deciduous and an evergreen species of Nothofagus has not been reported so far in natural communities. METHODS: The putative hybrids and the two presumed parental species were compared using 14 enzyme systems as well as shoot, leaf and reproductive morphology. KEY RESULTS: Six enzyme systems showed good resolution (MDH-B, IDH, SKDH, 6-PGDH, GOT and PGI) and in four of them (PGI, MDH-B, SKDH and 6-PGDH) the putative hybrids showed intermediate zymogram patterns between N. antarctica and N. dombeyi. Both principal coordinates analysis on isozyme data and principal components analysis (PCA) on quantitative morphological traits of shoots and leaves separated both parental species and located the putative hybrids closer to N. antarctica than to N. dombeyi. In the PCA, the number of basal cataphylls and the length : width ratio of leaves were the variables most discriminating among shoots of the three entities. The putative hybrids were intermediate between both species regarding leaf vernation, outline and venation, variation in leaf shape (length/width) with position on the parent shoot and in staminate inflorescence and cupule morphology. For other morphological traits, the putative hybrids resembled one of the parental species or differed from both species (e.g. valve morphology). CONCLUSIONS: Isoenzymatic and morphological data sets support the idea of the hybrid nature (probably F1 generation) of the semi-deciduous trees found. Nothofagus antarctica and N. dombeyi are probably more closely related than previously assumed. The relevance of pollen type in revealing evolutionary relationships between Nothofagus species is supported, and that of leaf-shedding pattern is rejected.  相似文献   

4.
重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征   总被引:5,自引:0,他引:5  
刘宏伟  刘文丹  王微  柴捷  陶建平 《生态学报》2015,35(12):4071-4080
以重庆石灰岩地区15种常绿木本植物和14种落叶木本植物为研究对象,对两种生活型植物叶片衰老前后叶干物质含量(LDMC)、比叶面积(SLA)和叶片厚度(LT)进行了比较,并采用不同的计算方法(单位质量叶片养分含量、单位面积叶片养分含量)分析了两类植物叶片衰老前后养分含量及再吸收特征,最后对养分再吸收效率与其他叶性状因子之间的关系进行了相关分析。结果表明:常绿植物成熟叶LDMC、LT及衰老叶LT显著低于落叶植物,落叶植物成熟叶和衰老叶SLA均显著高于常绿植物(P0.05);基于单位质量叶片计算的养分含量,常绿植物成熟和衰老叶N、P量均低于落叶植物,而基于单位面积叶片计算的N、P含量则表现出相反的趋势;基于不同方法计算的N、P再吸收效率差异不明显,其中常绿植物基于单位质量叶片养分含量计算的N、P平均再吸收效率为39.42%、43.79%,落叶植物的为24.08%、33.59%;常绿和落叶植物N、P再吸收效率与LDMC、SLA、LT和成熟叶N、P含量之间没有显著相关性,但与衰老叶养分含量存在显著负相关(P0.05)。研究发现,无论是常绿植物还是落叶植物,衰老叶N、P含量均较低,表明石灰岩地区植物具有较高的养分再吸收程度。  相似文献   

5.
A bioassay-guided purification of the extracts of Nothofagus dombeyi and N. pumilio leaves yielded several triterpenes and flavonoids including 2-O-acetylmaslinic acid, 3-O-acetyl 20,24,25-trihydroxydammarane, and 3,20,24,25-tetrahydroxydammarane as new natural products. All the isolated compounds were assessed for antifeeding activity against the 5th instar larvae of Ctenopsteustis obliquana. 12-Hydroxyoleanolic lactone and pectolinarigenin from N. dombeyi and dihydrooroxylin A from N. pumilio, showed significant antifeeding activity.  相似文献   

6.
养分再吸收是植物养分利用的重要策略,体现了植物对养分留存、利用和适应环境的能力.为研究亚热带不同生活型(常绿与落叶)阔叶树养分含量与养分再吸收的关系,以江西阳际峰国家级自然保护区内30种阔叶树为研究对象,测定成熟和衰老叶片氮(N)和磷(P)含量,分析常绿和落叶树种叶片N和P含量及其再吸收效率差异,揭示阔叶树种叶片养分再...  相似文献   

7.
广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式   总被引:1,自引:0,他引:1  
土壤养分供给性大小是否影响植物氮和磷再吸收效率仍存在争议。调查了广西猫儿山不同海拔常绿和落叶树种成熟和衰老叶片的氮和磷含量,探讨营养再吸收是否受到叶片习性和海拔的影响。所有树种氮和磷再吸收效率的平均值分别为56.5%和52.1%。常绿树种比落叶树种有显著较高的氮再吸收效率(P0.001)和磷再吸收效率(P0.01),这与前者有较低的衰老叶片氮和磷含量密切相关。随着海拔的上升,氮再吸收效率显著下降(P0.01),磷再吸收效率显著提高(P0.05)。氮再吸收效率与土壤氮:磷比(r=-0.41,P0.05)和成熟叶片氮:磷比(r=-0.37,P0.05)负相关,磷再吸收效率与土壤氮:磷比(r=0.44,P0.05)和成熟叶片氮:磷比(r=0.47,P0.01)正相关,表明了树种对低海拔氮限制的适应逐渐转变为对高海拔磷限制的适应。此外,氮再吸收效率与年均温正相关(r=0.43,P0.05)而磷再吸收效率与年均温负相关(r=-0.45,P0.01),这表明气温也是调节树木营养再吸收格局的重要影响因素。不同海拔树种氮和磷再吸收模式的差异可能是引起广西猫儿山常绿树种沿海拔形成双峰分布的原因之一。  相似文献   

8.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   

9.
Leaf longevity and nutrient resorption efficiency are important strategies to conserve plant nutrients. Theory suggests a negative relationship between them and also proposes that high concentration of phenolics in long‐lived leaves may reduce nutrient resorption. In order to provide new evidence on these relationships, we explored whether N‐resorption efficiency is related to leaf longevity, secondary compounds and other leaf traits in coexisting plant species of different life forms in the arid Patagonian Monte, Argentina. We assessed N‐resorption efficiency, green leaf traits (leaf mass per area (LMA), leaf longevity and lignin, total soluble phenolics and N concentrations) and N concentration in senescent leaves of 12 species of different life forms (evergreen shrubs, deciduous shrubs and perennial grasses) with contrasting leaf traits. We found that leaf longevity was positively correlated to LMA and lignin, and negatively correlated to N concentration in green leaves. N concentrations both in green and senescent leaves were positively related. N‐resorption efficiency was not associated with the concentration of secondary compounds (total soluble phenolics and lignin) but it was negatively related to LMA and leaf longevity and positively related to N concentration in green leaves. Furthermore, leaf traits overlapped among life forms highlighting that life forms are not a good indicator of the functional properties (at least in relation to nutrient conservation) of species. In conclusion, our findings indicated that differences in N‐resorption efficiency among coexisting species were more related to N concentration in green leaves, leaf lifespan and LMA than to the presence of secondary compounds at least those assessed in our study (soluble phenolics and lignin). Accordingly, N‐resorption efficiency seems to be modulated, at least in part, by the productivity–persistence trade‐off.  相似文献   

10.
Resorption is the process by which nutrients are withdrawn from leaves prior to leaf fall. Mistletoes are generally thought not to rely on nutrient resorption; being xylem‐tapping parasites, they instead derive the nutrients required for new growth from their host plant, at little or no cost. We measured nutrient (N, P, K, Ca, Mg) resorption in 18 parasitic mistletoe–host species pairs distributed across three sites with notably low‐P soil, also quantifying relationships with leaf lifespan (LL) and specific leaf area (SLA). There was little or no evidence of N, Ca or Mg resorption. By contrast, on average ~30% of P and ~20% of K were resorbed prior to leaf fall. Longer LL in mistletoes was associated with lower N and P concentrations in mistletoes and in host leaves. We provide evidence that, even though mistletoes are relatively inefficient in terms of nutrient resorption compared to non‐parasite species, on low‐P soils their ecological and evolutionary strategies for conserving phosphorous involve modulation of both leaf lifespan and P concentration in senesced leaves.  相似文献   

11.
Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in temperate deciduous forests. Resorption, however, may be curtailed by climatic events that cause rapid leaf death, such as severe drought, which has been projected to double by the year 2100 in the eastern United States. During a record drought in the southeastern US, we studied 18 common temperate winter-deciduous trees and shrubs to understand how extreme drought affects nutrient resorption of the macronutrients N, P, K, and Ca. Four species exhibited drought-induced leaf senescence and maintained higher leaf water potentials than the remaining 14 species (here called drought-evergreen species). This strategy prevented extensive leaf desiccation during the drought and successfully averted large nutrient losses caused by leaf desiccation. These four drought-deciduous species were also able to resorb N, P, and K from drought-senesced leaves, whereas drought-evergreen species did not resorb any nutrients from leaves lost to desiccation during the drought. For Oxydendrum arboreum, the species most severely affected by the drought, our results indicate that trees lost 50% more N and P due to desiccation than would have been lost from fall senescence alone. For all drought-deciduous species, resorption of N and P in fall-senesced leaves was highly proficient, whereas resorption was incomplete for drought-evergreen species. The lower seasonal nutrient losses of drought-deciduous species may give them a competitive advantage over drought-evergreen species in the years following the drought, thereby impacting species composition in temperate deciduous forests in the future.  相似文献   

12.
4种阔叶树种叶中氮和磷的季节动态及其转移   总被引:5,自引:1,他引:5  
薛立  徐燕  吴敏  李燕 《生态学报》2005,25(3):520-526
从叶完全展开到生长季结束 ,对常绿阔叶树种日本米槠 (Castanopsis cuspidata(Thunb.) Schottky)和具柄冬青 (Ilexpedunculosa Miq)及落叶阔叶树种栎 (Quercus serrata Murr.)和栓皮栎 (Quercus variabilis Blume)叶片的 N和 P浓度、含量和养分转移进行了测定 .在生长期中日本米槠新叶的 N浓度在 5月为 36 .6 g/ kg,然后降到 15 .5和 17.5 g/ kg之间 ,其老叶的N浓度波动于 10 .4和 13.1g/ kg的范围内 ,而具柄冬青新叶的 N浓度从 2 7.3下降到 16 .0 g/ kg,接着上升到 18.3g/ kg,其老叶的 N浓度在 12 .0到 15 .5 g/ kg的范围内。栎和栓皮栎的叶 N浓度分别从 2 8.8下降到 18.1g/ kg和从 2 8.5下降到17.5 g/ kg。日本米槠新叶的 N含量从 1.5 4下降到 1.35 g/ m2 ,接着上升到 1.5 0 g/ m2 ,其老叶 N含量从 1.36下降到1.0 0 g/ m2 ,接着上升到 1.2 1g/ m2 ,而具柄冬青新叶的 N含量从 2 .2 5下降到 1.6 0 g/ m2 ,接着上升到 2 .2 0 g/ m2 ,其老叶的 N含量从 2 .13下降到 1.6 5 g/ m2。栎和栓皮栎的叶 N含量分别从 2 .10下降到 1.2 8g/ m2和从 2 .95下降到 2 .13g/ m2。日本米槠新叶的 P浓度由 3.39g/ kg降到 1.12和 1.15 g/ kg之间 ,其老叶的 P浓度变化于 0 .6 6和 0 .88g/ kg的范围内 ,而具柄冬青新叶的  相似文献   

13.
Periodic measurements of gas‐exchange rates and determinations of foliar N and P concentrations were used for evaluating instantaneous water‐use efficiency and photosynthetic nutrient‐use efficiency in two co‐existing dwarf shrubs of different growth form (V. myrtillus, deciduous, and V. vitis‐idaea, evergreen) in a subalpine heath in the southern Alps of Italy. Those data were compared with cumulative assessments of water‐use efficiency and photosynthetic nutrient‐use efficiency obtained by measuring leaf carbon isotope discrimination in leaf tissues and by estimating nutrient resorption from senescing leaves. V. myrtillus presented higher dry‐weight based rates of net photosynthesis (Aweight) compared to V. vitis‐idaea. Aweight was positively correlated with foliar‐nutrient status and intercellular‐to‐ambient gradient in CO2 concentrations. Aweight was, furthermore, negatively correlated with leaf specific mass. Instantaneous photosynthetic nutrient‐use efficiency did not differ between the two species but the percentages of N and P pools resorbed from senescing leaves were somewhat higher in the deciduous species. The evergreen species showed lower P concentrations in senescing leaves which indicated a higher proficiency in resorbing phosphorus compared to the deciduous species. In addition, the evergreen species achieved a higher carbon gain per unit foliar N and P, due to a longer mean residence time of both nutrients. The two species did not differ from each other with respect to both instantaneous and long‐term water‐use efficiency. This was consistent with the climatic pattern, showing no sign of water deficiency through the growing season. Current‐year V. vitis‐idaea leaves had a significantly higher Δ13C compared to previous‐year leaves, possibly mirroring a long term acclimation of evergreen leaves, as far as they age, to the habitat conditions in the understory where evergreen species are usually confined within mixed dwarf‐shrub communities.  相似文献   

14.
The relative advantages of being deciduous or evergreen in subtropical forests and the relationship between leaf phenology and nutrient resorption efficiency are not well understood. The most successful deciduous species (Lyonia ovalifolia) in an evergreen-dominated subtropical montane cloud forest in southwest (SW) China maintains red senescing leaves throughout much of the winter. The aim of this study was to investigate whether red senescing leaves of this species were able to assimilate carbon in winter, to infer the importance of maintaining a positive winter carbon balance in subtropical forests, and to test whether an extended leaf life span is associated with enhanced nutrient resorption and yearly carbon gain. The red senescing leaves of L. ovalifolia assimilated considerable carbon during part of the winter, resulting in a higher yearly carbon gain than co-occurring deciduous species. Its leaf N and P resorption efficiency was higher than for co-occurring non-anthocyanic deciduous species that dropped leaves in autumn, supporting the hypothesis that anthocyanin accumulation and/or extended leaf senescence help in nutrient resorption. Substantial winter carbon gain and efficient nutrient resorption may partially explain the success of L. ovalifolia versus that of the other deciduous species in this subtropical forest. The importance of maintaining a positive carbon balance for ecological success in this forest also provides indirect evidence for the dominance of evergreen species in the subtropical forests of SW China.  相似文献   

15.
Green and senesced leaf nitrogen (N) and phosphorus (P) concentrations of different plant functional groups in savanna communities of Kruger National Park, South Africa were analyzed to determine if nutrient resorption was regulated by plant nutritional status and foliar N:P ratios. The N and P concentrations in green leaves and the N concentrations in senesced leaves differed significantly between the dominant plant functional groups in these savannas: fine-leaved trees, broad-leaved trees and grasses. However, all three functional groups reduced P to comparable and very low levels in senesced leaves, suggesting that P was tightly conserved in this tropical semi-arid savanna ecosystem. Across all functional groups, there was evidence for nutritional control of resorption in this system, with both N and P resorption efficiencies decreasing as green leaf nutrient concentrations increased. However, specific patterns of resorption and the functional relationships between nutrient concentrations in green and senesced leaves varied by nutrient and plant functional group. Functional relationships between N concentrations in green and senesced leaves were indistinguishable between the dominant groups, suggesting that variation in N resorption efficiency was largely the result of inter-life form differences in green leaf N concentrations. In contrast, observed differences in P resorption efficiencies between life forms appear to be the result of both differences in green leaf P concentrations as well as inherent differences between life forms in the fraction of green leaf P resorbed from senescing leaves. Our results indicate that foliar N:P ratios are poor predictors of resorption efficiency in this ecosystem, in contrast to N and P resorption proficiencies, which are more responsive to foliar N:P ratios.  相似文献   

16.
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient‐poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient‐poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.  相似文献   

17.
以浙江天童常绿阔叶林、常绿针叶林和落叶阔叶林为对象, 通过对叶片和凋落物C:N:P比率与N、P重吸收的研究, 揭示3种植被类型N、P养分限制和N、P重吸收的内在联系。结果显示: 1)叶片C:N:P在常绿阔叶林为758:18:1, 在常绿针叶林为678:14:1, 在落叶阔叶林为338:11:1; 凋落物C:N:P在常绿阔叶林为777:13:1, 常绿针叶林为691:14:1, 落叶阔叶林为567:14:1; 2)常绿阔叶林和常绿针叶林叶片与凋落物C:N均显著高于落叶阔叶林; 叶片C:P在常绿阔叶林最高, 常绿针叶林中等, 落叶阔叶林最低, 常绿阔叶林和常绿针叶林凋落物C:P显著高于落叶阔叶林; 叶片N:P比也是常绿阔叶林最高、常绿针叶林次之, 落叶阔叶林最低, 但常绿阔叶林凋落物N:P最低; 3)植被叶片N、P含量间(N为x, P为y)的II类线性回归斜率显著大于1 (p < 0.05), 表明叶片P含量的增加可显著提高叶片N含量; 凋落物N、P含量的回归斜率约等于1, 反映了凋落物中单位P含量与单位N含量间的等速损耗关系; 4)常绿阔叶林N重吸收率显著高于常绿针叶林与落叶阔叶林, 落叶阔叶林P重吸收率显著高于常绿阔叶林和常绿针叶林。虽然植被的N:P指示常绿阔叶林受P限制, 落叶阔叶林受N限制, 常绿针叶林受N、P的共同限制, 但是N、P重吸收研究结果表明: 受N素限制的常绿阔叶林具有高的N重吸收率, 受P限制的落叶阔叶林并不具有高的P重吸收率。可见, 较高的N、P养分转移率可能不是植物对N、P养分胁迫的一种重要适应机制, 是物种固有的特征。  相似文献   

18.

Background and Aims

The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous–evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations.

Methods

Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous–evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra).

Key Results

Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood.

Conclusions

Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.  相似文献   

19.
? Nutrient resorption is a fundamental process through which plants withdraw nutrients from leaves before abscission. Nutrient resorption patterns have the potential to reflect gradients in plant nutrient limitation and to affect a suite of terrestrial ecosystem functions. ? Here, we used a stoichiometric approach to assess patterns in foliar resorption at a variety of scales, specifically exploring how N?:?P resorption ratios relate to presumed variation in N and/or P limitation and possible relationships between N?:?P resorption ratios and soil nutrient availability. ? N?:?P resorption ratios varied significantly at the global scale, increasing with latitude and decreasing with mean annual temperature and precipitation. In general, tropical sites (absolute latitudes 相似文献   

20.
The influence of environmental gradients on the foliar nutrient economy of forests has been well documented; however, we have little understanding of what drives variability among individuals within a single forest stand, especially tropical forests. We evaluated inter‐ and intra‐specific variation in nutrient resorption, foliar nutrient concentrations and physical leaf traits of nine canopy tree species within a 1‐ha secondary tropical rain forest in northeastern Costa Rica. Both nitrogen (N) and phosphorus (P) resorption efficiency (RE) and proficiency of the nine tree species varied significantly among species, but not within. Both N and P RE were significantly negatively related to leaf specific strength. Green leaf N and P concentrations were strongly negatively related to leaf mass per area, and senesced leaf nutrient concentrations were significantly positively related to green leaf nutrient concentrations. This study reveals a strong influence of physical leaf traits on foliar nutrient and resorption traits of co‐occurring species in a secondary wet tropical forest stand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号