首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of an all-atom molecular dynamics simulation on a discoidal complex made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and a synthetic alpha-helical 18-mer peptide with an apolipoprotein-like charge distribution are presented. The system consists of 12 acetyl-18A-amide (Ac-18A-NH2) (. J. Biol. Chem. 260:10248-10255) molecules and 20 molecules of POPC in a bilayer, 10 in each leaflet, solvated in a sphere of water for a total of 28,522 atoms. The peptide molecules are oriented with their long axes normal to the bilayer (the "picket fence" orientation). This system is analogous to complexes formed in nascent high-density lipoprotein and to Ac-18A-NH2/phospholipid complexes observed experimentally. The simulation extended over 700 ps, with the last 493 ps used for analysis. The symmetry of this system allows for averaging over different helices to improve sampling, while maintaining explicit all-atom representation of all peptides. The complex is stable on the simulated time scale. Several possible salt bridges between and within helices were studied. A few salt bridge formations and disruptions were observed. Salt bridges provide specificity in interhelical interactions.  相似文献   

2.
3.
The binding of carbohydrate substrates to concanavalin A (Canavalia ensiformis agglutinin (ConA)) is essential for its interaction with various glycoproteins. Even though metal ions are known to control the sugar binding ability of legume lectins, the interplay between sugar and metal ion binding to ConA has not been elucidated in a detailed manner at the atomic level. We have carried out long, explicit solvent molecular dynamics simulations for tetrameric, dimeric, and monomeric forms of ConA in both the presence and absence of trimannoside and metal ions. Detailed analyses of these trajectories for various oligomeric forms under different environmental conditions have revealed dynamic conformational changes associated with the demetalization of ConA. We found that demetalization of ConA leads to large conformational changes in the ion binding loop, with some of the loop residues moving as far as 17 Å with respect to their positions in the native trimannoside and metal ion-bound crystal structure. However, the β-sheet core of the protein remains relatively unperturbed. In addition, the high mobility of the ion binding loop results in drifting of the substrates in the absence of bound metal ions. These simulations provide a theoretical rationale for previous experimental observations regarding the abolition of the sugar binding ability upon demetalization. We also found that the amino acid stretches of ConA, having high B-factor values in the crystal structure, show relatively greater mobility in the simulations. The overall agreement of the results of our simulations with various experimental studies suggests that the force field parameters and length of simulations used in our study are adequate to mimic the dynamic structural changes in the ConA protein.  相似文献   

4.
5.
DNA microarrays have been widely adopted by the scientific community for a variety of applications. To improve the performance of microarrays there is a need for a fundamental understanding of the interplay between the various factors that affect microarray sensitivity and specificity. We use lattice Monte Carlo simulations to study the thermodynamics and kinetics of hybridization of single-stranded target genes in solution with complementary probe DNA molecules immobilized on a microarray surface. The target molecules in our system contain 48 segments and the probes tethered on a hard surface contain 8-24 segments. The segments on the probe and target are distinct and each segment represents a sequence of nucleotides ( approximately 11 nucleotides). Each probe segment interacts exclusively with its unique complementary target segment with a single hybridization energy; all other interactions are zero. We examine how the probe length, temperature, or hybridization energy, and the stretch along the target that the probe segments complement, affect the extent of hybridization. For systems containing single probe and single target molecules, we observe that as the probe length increases, the probability of binding all probe segments to the target decreases, implying that the specificity decreases. We observe that probes 12-16 segments ( approximately 132-176 nucleotides) long gave the highest specificity and sensitivity. This agrees with the experimental results obtained by another research group, who found an optimal probe length of 150 nucleotides. As the hybridization energy increases, the longer probes are able to bind all their segments to the target, thus improving their specificity. The hybridization kinetics reveals that the segments at the ends of the probe are most likely to start the hybridization. The segments toward the center of the probe remain bound to the target for a longer time than the segments at the ends of the probe.  相似文献   

6.
Structural basis of DNA-protein recognition   总被引:16,自引:0,他引:16  
Recent structure determinations of several repressor-operator complexes have shown how proteins can recognize specific binding sites on DNA. Although each of these repressor proteins belongs to the 'helix-turn-helix' class of DNA-binding proteins, they do not use a simple code for recognition.  相似文献   

7.
Differences in salt bridges are believed to be a structural hallmark of homologous enzymes from differently temperature-adapted organisms. Nevertheless, the role of salt bridges on structural stability is still controversial. While it is clear that most buried salt bridges can have a functional or structural role, the same cannot be firmly stated for ion pairs that are exposed on the protein surface. Salt bridges, found in X-ray structures, may not be stably formed in solution as a result of high flexibility or high desolvation penalty. More studies are thus needed to clarify the picture on salt bridges and temperature adaptation. We contribute here to this scenario by combining atomistic simulations and experimental mutagenesis of eight mutant variants of aqualysin I, a thermophilic subtilisin-like proteinase, in which the residues involved in salt bridges and not conserved in a psychrophilic homolog were systematically mutated. We evaluated the effects of those mutations on thermal stability and on the kinetic parameters.Overall, we show here that only few key charged residues involved in salt bridges really contribute to the enzyme thermal stability. This is especially true when they are organized in networks, as here attested by the D17N mutation, which has the most remarkable effect on stability. Other mutations had smaller effects on the properties of the enzyme indicating that most of the isolated salt bridges are not a distinctive trait related to the enhanced thermal stability of the thermophilic subtilase.  相似文献   

8.
Available crystallographic data for homologous immunoglobulin constant domains were correlated with measured association constants for these domains. High correlation was found between the association constant and both the buried surface area (number of interdomain contacts) and the number of salt bridges formed in the interaction, whereas no correlation with the number of hydrogen bonds between domains was evident. The total free energy of binding, as determined from the association constant, was related to the number of contacts, hydrogen bonds and salt bridges found in the domain:domain interface by the crystallographic studies. These calculations yielded reasonable average energy terms for each interaction category.  相似文献   

9.
10.
Homeodomains are a class of helix-turn-helix DNA-binding protein motifs that play an important role in the control of cellular development in eukaryotes. They fold in a three alpha-helix structural module, where the third helix is the recognition helix that fits into the major groove of DNA. Structural analysis of the members of the homeodomain family led to the identification of interactions likely to stabilize the protein domains. Linking the helices pairwise, three salt bridges were found to be well preserved within the family. Also well conserved were two cation-pi interactions between aromatic and positively charged side chains. To analyze the structural role of the salt bridges, molecular dynamics simulations (MD) were carried out on the wild-type homeodomain from the Drosophila paired protein (1fjl) and on three mutants, which lack one or two salt bridges and mimic natural mutations in other homeodomains. Analysis of the trajectories revealed only small structural rearrangements of the three helices in all MD simulations, thereby suggesting that the salt bridges have no essential stabilizing role at room temperature, but rather might be important for improving thermostability. The latter hypothesis is supported by a good correlation between the melting midpoint temperatures of several homeodomains and the number of salt bridges and cation-pi interactions that connect secondary structures.  相似文献   

11.
A method using crude cellular mixtures is described which permits identification of polypeptides and DNA fragments forming specific complexes. Our procedure incorporates elements of both 'Southern' and 'protein' blotting and combines, in two dimensions, the resolving power of a denaturing protein gel with that of an agarose DNA gel. Conditions for 'crossing' have been established using the lambda repressor-operator system: the specific complex can be detected by crossing total protein from bacteria overproducing the repressor with a mixture of total genomic fragments from a lysogen.  相似文献   

12.
Jiang F  Lin W  Rao Z 《Protein engineering》2002,15(4):257-263
Molecular recognition and docking are essential to the biological functions of proteins. SOFTDOCK was one of the first molecular docking methods developed for protein-protein docking. Its ability to represent the molecular surface with different shapes and properties and to dock a variety of molecular complexes with certain conformational changes was demonstrated in a previous study. In the present work, we studied the effects of the docking parameters through statistical analysis. Seventy one typical binary complexes of different categories in PDB were also systematically docked for a test; 57 of them produced correct solutions with one set of docking parameters whereas the other 14 complexes required adjustment of the docking parameters, by decreasing the softness of the recognition and hence the background noise. We found that these 14 complexes had special structural features. Our results suggest that a variety of mechanisms may be involved in molecular recognition rather than the shape complementarity only, which is very helpful in developing more powerful methods for predicting molecular recognition.  相似文献   

13.
Crystallography, mutational mapping and crosslinking are but a few of the experimental techniques that have helped to elucidate the underlying principles of molecular recognition between macromolecules and to improve our understanding of the evolution of the structure-activity relationship (SAR). While this development has been particularly successful for small and rigid ligands and substrates that bind to larger hydrophilic biomolecules, our understanding of membrane-embedded proteins is still rather limited. This review uses the example of the neuropeptide family of tachykinins and their G-protein coupled receptors (GPCR) to present how complementary experimental strategies over the past decades have nourished and modified conceptual models of the structural requisites of molecular recognition and function. Given the little we know, the pertinent question is how we proceed from here.  相似文献   

14.
Equilibrium geometries and binding energies of model "salt" or "ion" bridge systems have been computed by ab initio quantum chemistry techniques (GAUSSIAN82) and by empirical force field techniques (AMBER2.0). Formate and dimethyl phosphate served as anions in the model compounds while interacting with several organic cations, including methyl ammonium, methyl guanidinium, and divalent metal ion (either Mg2+ or Ca2+) without and with an additional chloride; and a divalent metal ion (either Mg2+ or Ca2+), chloride, and four water molecules of hydration about the metal ion. The majority of the quantum chemical computations were performed using a split-valence basis set. For the model compounds studied we find that the ab initio optimized geometries are in remarkably good agreement with the molecular mechanics geometries. Several calculations were also performed using diffuse fractions. The formate anion binds these model cations more strongly than does dimethyl phosphate, while the organic cation methyl ammonium binds model anions more strongly than does methyl guanidinium. Finally, in model compounds including organic anions, Mg2+ or Ca2+ and four molecules of water, and a chloride anion, we find that the equilibrium structure of the magnesium complex involves a solvent separated ion pair (the magnesium ion is six coordinate), whereas the calcium ion complex remains seven coordinate. Molecular mechanics overestimates binding energies, but the estimates may be close enough to actual binding energies to give useful insight into the details of salt bridges in biological systems.  相似文献   

15.
A key event in the pathogenesis of transmissible spongiform encephalopathies is the conversion of PrP-sen to PrP-res. Morrissey and Shakhnovich (Morrissey, M. P., and Shakhnovich, E. I. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11293-11298) proposed that the conversion mechanism involves critical interactions at helix 1 (residues 144-153) and that the helix is stabilized on PrP-sen by intra-helix salt bridges between two aspartic acid-arginine ion pairs at positions 144 and 148 and at 147 and 151, respectively. Mutants of the hamster prion protein were constructed by replacing the aspartic acids with either asparagines or alanines to destabilize the proposed helix 1 salt bridges. Thermal and chemical denaturation experiments using circular dichroism spectroscopy indicated the overall structures of the mutants are not substantially destabilized but appear to unfold differently. Cell-free conversion reactions performed using ionic denaturants, detergents, and salts (conditions unfavorable to salt bridge formation) showed no significant differences between conversion efficiencies of mutant and wild type proteins. Using conditions more favorable to salt bridge formation, the mutant proteins converted with up to 4-fold higher efficiency than the wild type protein. Thus, although spectroscopic data indicate the salt bridges do not substantially stabilize PrP-sen, the cell-free conversion data suggest that Asp-144 and Asp-147 and their respective salt bridges stabilize PrP-sen from converting to PrP-res.  相似文献   

16.
The energetic contribution of complex salt bridges, in which one charged residue (anchor residue) forms salt bridges with two or more residues simultaneously, has been suggested to have importance for protein stability. Detailed analysis of the net energetics of complex salt bridge formation using double- and triple-mutant cycle analysis revealed conflicting results. In two cases, it was shown that complex salt bridge formation is cooperative, i.e., the net strength of the complex salt bridge is more than the sum of the energies of individual pairs. In one case, it was reported that complex salt bridge formation is anti-cooperative. To resolve these different findings, we performed analysis of the geometries of salt bridges in a representative set of structures from the PDB and found that over 87% of all complex salt bridges anchored by Arg/Lys have a geometry such that the angle formed by their Calpha atoms, Theta, is <90 degrees . This preferred geometry is observed in the two reported instances when the energetics of complex salt bridge formation is cooperative, while in the reported anti-cooperative complex salt bridge, Theta is close to 160 degrees . Based on these observations, we hypothesized that complex salt bridges are cooperative for Theta < 90 degrees and anti-cooperative for 90 degrees < Theta < 180 degrees . To provide a further experimental test for this hypothesis, we engineered a complex salt bridge with Theta = 150 degrees into a model protein, the activation domain of human procarboxypeptidase A2 (ADA2h). Experimentally derived stabilities of the ADA2h variants allowed us to show that the complex salt bridge in ADA2h is anti-cooperative.  相似文献   

17.
18.
Although surface plasmon resonance (SPR) biosensor technique has been used to study protein-protein interactions and to detect conformational changes of proteins, it has not been shown whether the SPR biosensor can be used to study a complex kinetic system such as the protein-DNA binding, which sometimes involves several binding steps as well as dynamic conformational changes of the complexes. In this study, we have used SPR biosensor and T7 polymerase as the model system to study the interactions of the polymerase with a series of DNA template-primer duplexes containing different number of mismatches and GC contents at various positions near the primer 3'-end. In general, the binding constants measured by the SPR are several magnitudes smaller than those determined in solution, indicating the limitation of the surface-based technique for measuring solution-based interactions. However, the distinct polymerase binding profiles obtained for DNA duplexes differed by as low as a single mismatch suggest that the SPR data can be used for relative comparison purpose among a set of experiments carried out under identical conditions. The successful fitting of the binding profiles using the established translocation model also demonstrated that SPR can be used to monitor conformational changes, as well as to derive relative kinetic values, within a complicated DNA-protein interaction system. The results also demonstrated that SPR biosensor may be used as a sensitive technique for studying molecular recognition events, such as single-base discrimination involved in protein-DNA interactions.  相似文献   

19.
The studies reviewed here demonstrate that the interaction of lymphocytes with HEV is one of the most approachable models available for the study of heterotypic cell-cell recognition mechanisms. Lymphocyte-HEV interaction is mediated by specific lymphocyte surface receptors recognizing, by as yet unknown mechanisms, determinants expressed by specialized high endothelial cells in lymphoid tissues and sites of chronic inflammation. Both the lymphocyte and endothelial cell surface elements of the interaction are precisely regulated, controlling the traffic of lymphocyte subsets through particular lymphoid organs and into sites of inflammation. Considerable progress, reviewed here, has been made in defining and characterizing the lymphocyte surface molecules mediating this cellular interaction. By contrast, the nature of the endothelial cell determinants recognized by migrating lymphocytes remains a mystery. Future experiments must be designed to identify these endothelial cell determinants, and to examine critically a proposed role of carbohydrate in lymphocyte-HEV interaction.  相似文献   

20.
Understanding mechanisms in cooperative proteins requires the analysis of the intermediate ligation states. The release of hydrogen ions at the intermediate states of native and chemically modified hemoglobin, known as the Bohr effect, is an indicator of the protein tertiary/quaternary transitions, useful for testing models of cooperativity. The Bohr effects due to ligation of one subunit of a dimer and two subunits across the dimer interface are not additive. The reductions of the Bohr effect due to the chemical modification of a Bohr group of one and two alpha or beta subunits are additive. The Bohr effects of monoliganded chemically modified hemoglobins indicate the additivity of the effects of ligation and chemical modification with the possible exception of ligation and chemical modification of the alpha subunits. These observations suggest that ligation of a subunit brings about a tertiary structure change of hemoglobin in the T quaternary structure, which breaks some salt bridges, releases hydrogen ions, and is signaled across the dimer interface in such a way that ligation of a second subunit in the adjacent dimer promotes the switch from the T to the R quaternary structure. The rupture of the salt bridges per se does not drive the transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号