首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teratogenesis in tails and limb digits of fetal mice with varying Trp53 status was examined after exposure of pregnant females to 4 Gy gamma radiation with and without a prior 30-cGy exposure. Prior low-dose exposure modified the teratogenic effects of radiation in a manner dependent upon Trp53 status and gestation time. A 4-Gy exposure on gestation day 11 resulted in tail shortening and digit abnormalities. A 30-cGy exposure 24 h prior to a 4-Gy radiation exposure on day 11 reduced the extent of both digit abnormalities and the tail-shortening effects in Trp53(+/+) fetuses and also reduced tail shortening in Trp53(+/-) fetuses, but to a lesser extent. However, the pre-exposure enhanced the tail-shortening effects of 4 Gy in Trp53(-/-) fetuses. In contrast, a 30-cGy exposure given 24 h prior to a 4-Gy exposure on gestation day 12 had no effect on the reduced tail length resulting from the 4-Gy exposure of Trp53(+/+) or Trp53(+/-) fetuses, but it partly protected Trp53(-/-) fetuses against reduced tail length. A 4-Gy exposure alone on day 12 did not result in any increase in the frequency of digit abnormalities in Trp53(-/-) fetuses so any protective effect of the preirradiation could not be detected. However, the preirradiation did result in protection against in digit abnormalities in Trp53(+/-) fetuses. We conclude that radiation-induced teratogenesis reflects both Trp53-dependent and independent processes that lead to apoptosis, and these respond differently to prior adapting doses.  相似文献   

2.
Whole-body single exposure of female Wistar rats to 0.25, 0.5 and 1 Gy of gamma-rays (dose rate of 0.03 cGy/s) on the 10th day of pregnancy (a period of formation of the reproductive system in fetus) was carried out. To study irradiation consequences on the antenatal and postnatal development of the progeny 220 females, 700 19-day-old fetuses and about 1100 young rats were examined. The antenatal development of the progeny of the first generation was significantly impaired after the exposure to 1 Gy. However even less radiation doses resulted in a pronounced tendency to higher rates of intrauterine death and a lower number of live fetuses. Significant deviatins in the postnatal development of the first generation progeny were found after the exposure to 0.5 Gy, although the exposure to 0.25 Gy led to a higher rate of postnatal death and a less number of newborns in the litter.  相似文献   

3.
We studied the frequency of malformations induced in two mouse strains (Heiligenberger, C57Bl/6J) by exposure to x-rays 3 h after conception. Whereas there was a high number of malformed fetuses in Heiligenberger mice (mostly gastroschises) on day 19 of pregnancy, C57Bl did not respond to radiation exposure shortly after conception with an increased frequency of malformed fetuses. Cross-breeding of both strains revealed that no statistically significant increase in radiation-induced malformations was obtained in the F1 fetuses when the father was Heiligenberger and the mother C57Bl. In the opposite case (Heiligenberger mother, C57Bl father a small but statistically significant increase was observed.  相似文献   

4.
Mice were exposed at various ages to 1 Gy or 2 Gy of X rays, and translocation frequencies in peripheral blood T cells, spleen cells, and bone marrow cells were determined with FISH painting of chromosomes 1 and 3 when the animals were 20 weeks old. It was found that the mean translocation frequencies were very low (< or =0.8%) in mice exposed in the fetal or early postnatal stages. However, with the increase in animal age at the time of irradiation, the frequency observed at 20 weeks old became progressively higher then reached a plateau (about 5%) when mice were irradiated when > or =6 weeks old. A major role of p53 (Trp53)-dependent apoptosis for elimination of aberrant cells was not suggested because irradiated fetuses, regardless of the p53 gene status, showed low translocation frequencies (1.8% in p53(-/-) mice and 1.4% in p53(+/-) mice) compared to the frequency in the p53(-/-) mother (7.4%). In contrast, various types of aberrations were seen in spleen and liver cells when neonates were examined shortly after irradiation, similar to what was observed in bone marrow cells after irradiation in adults. We interpreted the results as indicating that fetal cells are generally sensitive to induction of chromosome aberrations but that the aberrant cells do not persist because fetal stem cells tend to be free of aberrations and their progeny replace the pre-existing cell populations during the postnatal growth of the animals.  相似文献   

5.
We analysed the transmission of lethal and teratogenic events to the subsequent generation in HLG/Zte mice after exposure of the zygote stage to 1 Gy X-rays. As observed in previous studies, our results on teratogenic events occurring in the same generation, which was exposed during the zygote stage, reveal a significantly higher risk for the induction of gastroschisis. Interesting new insights came from the study of lethal and teratogenic effects in the generation obtained after mating female mice, which were exposed during their zygote stage, to unexposed males. An approximately 2-fold higher level of damage was manifest in this generation compared with controls, expressed mainly as a significant increase of prenatal mortality (P<0.01). Although there was an increase in the number of malformed fetuses on day 19 of gestation (6.5% cases of gastroschisis compared to 3.5% in the controls), the frequency of gastroschisis in the exposed group was just not statistically significant (P>0.05). These results are in line with the hypothesis that genomic instability is involved in the damage seen after radiation exposure of the zygote stage of HLG mice.  相似文献   

6.
The adaptive response is an important phenomenon in radiobiology. A study of the conditions essential for the induction of an adaptive response is of critical importance to understanding the novel biological defense mechanisms against the hazardous effects of radiation. In our previous studies, the specific dose and timing of radiation for induction of an adaptive response were studied in ICR mouse fetuses. We found that exposure of the fetuses on embryonic day 11 to a priming dose of 0.3 Gy significantly suppressed prenatal death and malformation induced by a challenging dose of radiation on embryonic day 12. Since a significant dose-rate effect has been observed in a variety of radiobiological phenomena, the effect of dose rate on the effectiveness of induction of an adaptive response by a priming dose of 0.3 Gy administered to fetuses on embryonic day 11 was investigated over the range from 0.06 to 5.0 Gy/min. The occurrence of apoptosis in limb buds, incidences of prenatal death and digital defects, and postnatal mortality induced by a challenging dose of 3.5 Gy given at 1.8 Gy/min to the fetuses on embryonic day 12 were the biological end points examined. Unexpectedly, effective induction of an adaptive response was observed within two dose-rate ranges for the same dose of priming radiation, from 0.18 to 0.98 Gy/ min and from 3.5 to 4.6 Gy/min, for reduction of the detrimental effect induced by a challenging dose of 3.5 Gy. In contrast, when the priming irradiation was delivered at a dose rate outside these two ranges, no protective effect was observed, and at some dose rates elevation of detrimental effects was observed. In general, neither a normal nor a reverse dose- rate effect was found in the dose-rate range tested. These results clearly indicated that the dose rate at which the priming irradiation was delivered played a crucial role in the induction of an adaptive response. This paper provides the first evidence for the existence of two dose-rate ranges for the same dose of priming radiation to successfully induce an adaptive response in mouse fetuses.  相似文献   

7.
The aim of the present study was to investigate whether weekly exposure to gamma rays causes a persistent increase in the number of radioresistant leukocytes in mice in vivo. Using the comet assay, 1 Gy radiation exposure decreased the percentage of leukocytes with less than 5% DNA in the tail (<5% DNAT), and we propose that radioresistance induction might increase the number of cells with <5% DNAT after radiation exposure. We exposed mice to 1 Gy gamma rays weekly for four weeks or 2 Gy per week for nine weeks. We observed a significant increase in cells with <5% DNAT after the third week and up to nine weeks of exposure. We exposed animals to gradually increasing radiation doses and finally challenged the lymphocytes with 1 Gy radiation both in vivo and in vitro. We observed increased radioresistance in vitro, providing evidence that a cellular process is involved. However, more radioresistance was observed in vivo than in vitro, suggesting a physiological effect. Cells challenged in vitro were maintained on ice during and after exposure, which likely caused a reduction in DNA repair. Radioresistance induction likely arose from mutation selection in stem cells because leukocytes are unable to proliferate in peripheral blood.  相似文献   

8.
W U Müller  C Streffer 《Teratology》1990,42(6):643-650
Various well-defined stages during completion of the second meiotic division and early organogenesis of mouse embryos were X-irradiated with doses of 1-4 Gy (100-400 rad). The major risk was prenatal mortality with radiation sensitivity changing markedly with dependence on the developmental stage irradiated; in the case of day 1 even within hours. The surviving fetuses did show a significantly enhanced frequency of malformations on day 19 of gestation (mostly gastroschisis and some exencephalies). This was true for all stages between days 1 and 8; only sensitivity again changed considerably. The radiation doses used in this study are markedly higher than doses that can be expected from radiation diagnostics, but exposure is in a range comparable to doses that can occur in radiation therapy (e.g., Morbus Hodgkin).  相似文献   

9.
BACKGROUND: Although there are some reports on neutron teratology, there is little information on the adaptive response of gamma radiation for protection against neutron‐induced teratogenesis. This study examined whether or not a low dose of gamma radiation can induce an adaptive response in mouse fetuses exposed to a subsequent dose of neutrons in vivo. METHODS: Pregnant ICR mice were exposed to a priming dose of 0.3 Gy (0.9 Gy/min) of gamma rays on day 10.5 of gestation and challenged with 0.8 Gy (0.94 Gy/minute) of neutrons 24 hlater. The mice were sacrificed on day 18.5 of gestation. The fetuses were examined for mortality, growth retardation, and other morphologic abnormalities. RESULTS: The tail length in the 0.3 Gy of gamma rays + 0.8 Gy of neutrons group was significantly shorter than in the 0.8 Gy of neutrons group. Although there was no significant difference compared with the 0.8 Gy of neutrons group, the number of live fetuses in the 0.3 Gy of gamma rays +0.8 Gy of neutrons group was lower. There was no evidence of primed exposure‐related reductions in the malformed fetuses. Although there was no significant difference compared with the unprimed group, the number of malformed offspring in the primed group was higher. Furthermore, the incidence of kinked tail and adactyly was significantly higher in the primed mice than in the unprimed mice. CONCLUSIONS: Overall, this study shows that exposure to 0.3 Gy of gamma rays failed to induce an adaptive response of fetogenesis to a neutron challenge dose. Birth Defects Res (Part B) 83:502‐506, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
Abstract: Bone marrow aplasia observed following ionizing radiation exposure (Total Body Irradiation; gamma dose range: 2-10 Gy) is a result, in particular, of the radiation-induced (RI) apoptosis in hematopoietic stem and progenitor cells (HSPC). We have previously shown in a baboon model of mobilized peripheral blood CD34+ cell irradiation in vitro that RI apoptosis in HSPC was an early event, mostly occurring within the first 24 hours, which involves the CD95 Fas pathway. Apoptosis may be significantly reduced with a combination of 4 cytokines (4F): Stem Cell Factor (SCF), FLT-3 Ligand (FL), thrombopoietin (TPO), and interleukin-3 (IL-3), each at 50 ng x mL(-1) (15% survival versus <3% untreated cells, 24 h post-irradiation at 2.5 Gy). In this study we show that addition of TNF-alpha(800 IU/ml) induces an increase in 4F efficacy in terms of cell survival 24 h after incubation (26% survival after 24 h irradiation exposure at 2.5 Gy) and amplification (k) of CD34+ cells after 6 days in a serum free culture medium (SFM) (kCD34+ = 4.3 and 6.3 respectively for 4F and successive 4F + TNF-a/ 4F treatments). In addition, the 4F combination allows culture on pre-established allogenic irradiated stromal cells in vitro at 4 Gy (kCD34+ = 4.5). Overall this study suggests (i) the potential therapeutic interest for an early administration of anti-apoptotic cytokines with or without hematopoiesis inhibitors (emergency cytokine therapy) and (ii) the feasibility in the accidentally irradiated individual, of autologous cell therapy based on ex vivo expansion in order to perform autograft of residual HSPC collected after the accident.  相似文献   

11.
We previously reported that a priming dose of 0.3 Gy on gestation day 11 significantly increased the rate of living fetuses and reduced the incidence of congenital malformations caused by exposure to 5 Gy X rays on gestation day 12 in ICR mice. In the present study, postnatal development of the live offspring was investigated using a set of developmental and behavioral parameters. The offspring of the mice irradiated with 0.3 Gy generally showed a delay in the appearance of most of the physiological markers, impaired acquisition of neonatal reflexes, and alteration of adult behavior. However, an increase in body weight in the females was observed 4 weeks postnatally. In the offspring primed with 0.3 Gy followed by a challenging dose of 5 Gy prenatally, a high postnatal mortality was found, and all the survivors had various radiation-induced detrimental effects. The results indicated that the priming dose was advantageous to survival itself, but was disadvantageous to the health of survivor. The results also suggested that studying the whole animal can show the extent of the effects of radiation, i.e. quality of life, in a way that cellular or molecular studies cannot.  相似文献   

12.
The effects of prolonged irradiation at accumulated doses from 0.5 to 6.0 Gy (dose rate 3.03 cGy/day) on reproductive organs' weight (testes, epididymises, seminal vesicles, prostate) of male rats starting from the early ontogenetic period were studied. On the first day after the irradiation with 1.0 Gy dose a significant loss of the weight in testes and epididymises was revealed. This leaded to the marked atrophy of the organs with the increase of the radiation dose. Long-term restoration of the weight of testes and epididimyses was registered. It was not completed during three months after radiation exposure at 2.0 Gy and higher doses for epididimyses and 4.0-6.0 Gy for testes. The respective changes in the seminal vesicles and prostate weight were less pronounced and had more complicated character. However in the distant period (30-90 days of postreatment) after exposure to 2.0 Gy these parameters were noticeably decreased.  相似文献   

13.
Neurocyte nuclei increase in volume without structural changes in karyoplasm at early times after gamma-irradiation of rat head with doses of 50 to 100 Gy. Irradiation of 200 Gy causes a diminution of the nuclei volume while at a dose of 400 Gy the nuclei do not change their volume. A dose as high as 1000 Gy causes severe changes in the karyoplasm leading to nucleus swelling. At later times (24-72 h), the increase in the nuclei volume is associated with the changes in the karyoplasm structure. At one and the same dose, radiation causes either a decrease (irradiation of the head) or increase (exposure of the body) in the neurocyte nuclei volume. At early times after wholebody uniform irradiation no karyometric changes are detected. The nucleus swelling is more pronounced at lower dose-rates.  相似文献   

14.
The objective of this investigation was to determine the effect of low-dose prenatal X-irradiation on postnatal growth and neurobehavioral development, and whether alterations would manifest at dosages lower than those which produce anatomic malformations from exposure at the most sensitive period of organogenesis. Ninety-eight Wistar strain rats were exposed to 0.1, 0.2, or 0.4 Gy X-radiation of were sham irradiated on the 9th or 17th day of gestation. A conventional teratologic evaluation was completed on half of the animals (572 fetuses). The age of appearance of four physiologic markers and of acquisition of six reflexes was observed in 372 offspring. Exposure during early organogenesis at these levels had no effect on any of these parameters. Prenatal exposure to X-radiation on the 17th day of gestation at dosage levels greater than 0.1 Gy resulted in alterations in the appearance of three postnatal neurophysiologic parameters. Growth retardation throughout the postpartum period also was observed in the offspring. The induction of developmental and reflex alterations had a comparable threshold to the known threshold for anatomic malformations on the 9th day. These results indicate that all of the parameters studied had thresholds either at or above 0.2 Gy acute radiation, and that the postpartum developmental and reflex acquisition measures were not more sensitive indicators of exposure to X-radiation than growth parameters.  相似文献   

15.
We studied the effects of caffeine (2 mM), X-rays (1 Gy) and the combination of both agents on cell proliferation and formation of micronuclei in the early stages of preimplantation mouse embryos in vitro. Two-cell embryos were exposed to the agents shortly before division to the 4-cell stage. Proliferation and micronucleus production was monitored every 2 h in the 4- and 8-cell stages. A rather peculiar pattern of micronucleus formation after radiation exposure alone was observed for 8-cell embryos: those embryos that were the first to enter the 8-cell stage showed two to three times higher numbers of micronuclei per cell when compared with those embryos that entered the 8-cell stage some hours later. Studies of the kinetics of cell proliferation and of micronucleus formation in 4- and 8-cell embryos and exposure to caffeine revealed that this result could be explained by two factors: a slight asynchrony in the developmental stage at the time of exposure and the length of the interval being available for repair processes. When caffeine was present, a third factor had to be taken into consideration: direct inhibition of repair by caffeine.Dedicated to Prof. W. Jacobi on the occasion of his 65th birthday  相似文献   

16.
To assess the genetic effects of fission neutron, the induction of external malformations was studied in F1 fetuses after F0 male mice were irradiated. Male mice of the ICR:MCH strain were irradiated with 252Cf neutron at doses of 0.238, 0.475, 0.95 and 1.9 Gy. They were mated with non-irradiated female mice at 71-120 days after the irradiation. Pregnant females were autopsied on day 18 of gestation and their fetuses were examined for deaths and external abnormalities. No increases of pre- and post-implantation losses were noted at any dose. External abnormalities were observed at rates of 1.40% in the 0.238 Gy, 2.23% in the 0.475 Gy, 3.36% in the 0.95 Gy and 3.26% in the 1.9 Gy groups; the rate in the control group was 1.65%. The dose-response curve was linear up to 0.95 Gy, and then flattened out; the induction rate of external abnormalities was 2.7 x 10(-4)/gamete/cGy based on the linear regression. These results indicated that fission neutron effectively induces external abnormalities in F1 fetuses after spermatogonial irradiation.  相似文献   

17.
Using high throughput tandem mass tag (TMT) based tagging technique, we identified 4172 proteins in three developmental stages: early, mid, and late seed filling. We mapped the identified proteins to metabolic pathways associated with seed filling. The elevated abundance of several kinases was observed from the early to mid-stages of seed filling, indicating that protein phosphorylation was a significant event during this period. The early to late seed filling stages were characterized by an increased abundance of proteins associated with the cell wall, oil, and vacuolar-related processes. Among the seed storage proteins, 7S (β-subunit) and 11S (Gy3, Gy4, Gy5) steadily increased in abundance during early to late stages of seed filling, whereas 2S albumin exhibited a decrease in abundance during the same period. An increased abundance of proteases, senescence-associated proteins, and oil synthesis proteins was observed from the mid to late seed filling stages. The mid to late stages of seed filling was also characterized by a lower abundance of transferases, transporters, Kunitz family trypsin, and protease inhibitors. Two enzymes associated with methionine synthesis exhibited lower abundance from early to late stages. This study unveiled several essential enzymes/proteins related to amino acid and protein synthesis and their accumulation during seed development. All data can be accessed through this link: https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=38784ecbd0854bb3801afc0d89056f84 . (Accession MSV000087577)  相似文献   

18.
S Pampfer  C Streffer 《Teratology》1988,37(6):599-607
Female mice (strain: "Heiligenberger Stamm") were irradiated with neutrons (7 MeV) or X-rays when embryos were at the early zygote stage; uterine contents were examined on gestation day 19 for prenatal mortality and malformed fetuses. For both radiation qualities, the dose-dependent survival curve fitted well to a simple exponential equation; the neutron relative biological efficiency (RBE) value was 2.3. The major fraction of deaths induced by exposure to neutrons or X-rays occurred before implantation. Aside from dead embryos, malformed fetuses were observed 19 days p.c. (postconception). The number of malformed fetuses increased with a linear-quadratic function of neutron or X-ray dose. Malformations were mainly gastroschisis, although omphaloceles and anencephalies were also observed. The neutron RBE value for the induction of malformations varied from 2.0 to 2.8 in the dose range tested. Except after 75-cGy neutrons, no significant increase in the proportion of stunted or skeletally malformed fetuses was noted. Our results indicated that the reaction of preimplantation embryos to irradiation could be more complex than the simple "all-or-none" response considered so far.  相似文献   

19.
The radioadaptive survival response induced by a conditioning exposure to 0.45 Gy and measured as an increase in 30-day survival after mid-lethal X irradiation was studied in C57BL/6N mice. The acquired radioresistance appeared on day 9 after the conditioning exposure, reached a maximum on days 12-14, and disappeared on day 21. The conditioning exposure 14 days prior to the challenge exposure increased the number of endogenous spleen colonies (CFU-S) on days 12-13 after the exposure to 5 Gy. On day 12 after irradiation, the conditioning exposure also increased the number of endogenous CFU-S to about five times that seen in animals exposed to 4.25-6.75 Gy without preirradiation. The effect of the interval between the preirradiation and the challenge irradiation on the increase in endogenous CFU-S was also examined. A significant increase in endogenous CFU-S was observed when the interval was 14 days, but not 9 days. This result corresponded to the increase in survival observed on day 14 after the challenge irradiation. Radiation-inducted resistance to radiation-induced lethality in mice appears to be closely related to the marked recovery of endogenous CFU-S in the surviving hematopoietic stem cells that acquired radioresistance by preirradiation. Preirradiation enhanced the recovery of the numbers of erythrocytes, leukocytes and thrombocytes very slightly in mice exposed to a sublethal dose of 5 Gy, a dose that does not cause bone marrow death. There appears to be no correlation between the marked increase in endogenous CFU-S and the slight increase or no increase in peripheral blood cells induced by the radioadaptive response. The possible contribution by some factor, such as Il4 or Il11, that has been reported to protect irradiated animals without stimulating hematopoiesis is discussed.  相似文献   

20.
The bystander effect describes radiation-like damage in unirradiated cells either in the vicinity of irradiated cells or exposed to medium from irradiated cells. This study aimed to further characterize the poorly understood mitochondrial response to both direct irradiation and bystander factor(s) in human keratinocytes (HPV-G) and Chinese hamster ovarian cells (CHO-K1). Oxygen consumption rates were determined during periods of state 4, state 3 and uncoupled respiration. Mitochondrial mass was determined using MitoTracker FM. CHO-K1 cells showed significantly reduced oxygen consumption rates 4 h after exposure to 5 Gy direct radiation and irradiated cell conditioned medium (ICCM) and an apparent recovery 12-24 h later. The apparent recovery was likely due to the substantial increase in mitochondrial mass observed in these cells as soon as 4 h after exposure. HPV-G cells, on the other hand, showed a sustained increase in oxygen consumption rates after ICCM exposure and a transient increase 4 h after exposure to 5 Gy direct radiation. A significant increase in mitochondrial mass per HPV-G cell was observed after exposure to both direct radiation and ICCM. These findings are indicative of a stress response to mitochondrial dysfunction that increases the number of mitochondria per cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号