首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Na+-channel-affecting toxin Cn2 represents the major and one of the most toxic components of the venom of the Mexican scorpion Centruroides noxius Hoffmann. A monoclonal antibody BCF2 raised against Cn2 has been shown previously to be able to neutralize the toxic effect of Cn2 and of the whole venom of C. noxius. In the present study the epitope was mapped to a surface region comprising the N- and C-terminal segments of Cn2, using continuous and discontinuous synthetic peptides, designed on the basis of the sequence and a three-dimensional model of Cn2. The study of peptides of varying length resulted in the identification of segments 5-14 and 56-65 containing residues essential for recognition by BCF2. The peptide (abbreviated SP7) with the highest affinity to BCF2 (IC50 = 5.1 microM) was a synthetic heterodimer comprising the amino acid sequence from position 3-15 (amidated) of Cn2, bridged by disulfide to peptide from position 54-66, acetylated and amidated. Similar affinity was found with peptide SP1 [heterodimer comprising residues 1-14 (amidated) of Cn2, bridged with synthetic peptide 52-66 (acetylated)]. SP1 and SP7 were used to induce anti-peptide antibodies in mouse and rabbit. Both peptides were highly immunogenic. The sera obtained were able to recognize Cn2 and to neutralize Cn2 in vitro. The most efficient protection (8.3 microgram Cn2 neutralized per mL of serum) was induced by rabbit anti-SP1 serum.  相似文献   

2.
Cn12 isolated from the venom of the scorpion Centruroides noxius has 67 amino-acid residues, closely packed with four disulfide bridges. Its primary structure and disulfide bridges were determined. Cn12 is not lethal to mammals and arthropods in vivo at doses up to 100 microg per animal. Its 3D structure was determined by proton NMR using 850 distance constraints, 36 phi angles derived from 36 coupling constants obtained by two different methods, and 22 hydrogen bonds. The overall structure has a two and half turn alpha-helix (residues 24-32), three strands of antiparallel beta-sheet (residues 2-4, 37-40 and 45-48), and a type II turn (residues 41-44). The amino-acid sequence of Cn12 resembles the beta scorpion toxin class, although patch-clamp experiments showed the induction of supplementary slow inactivation of Na(+) channels in F-11 cells (mouse neuroblastoma N18TG-2 x rat DRG2), which means that it behaves more like an alpha scorpion toxin. This behaviour prompted us to analyse Na(+) channel binding sites using information from 112 Na(+) channel gene clones available in the literature, focusing on the extracytoplasmic loops of the S5-S6 transmembrane segments of domain I and the S3-S4 segments of domain IV, sites considered to be responsible for binding alpha scorpion toxins.  相似文献   

3.
We report the high-resolution solution structure of the 6.3 kDa neurotoxic protein CsE-v5 from the scorpion Centruroides sculpturatus Ewing (CsE, range southwestern U.S.). This protein is the second example of an Old World-like neurotoxin isolated from the venom of this New World scorpion. However, unlike CsE-V, which is the first Old World-like toxin isolated and shows both anti-insect and anti-mammal activity, CsE-v5 shows high specificity for insect sodium channels. Sequence-specific proton NMR assignments and distance and angle constraints were obtained from 600 MHz 2D-NMR data. Distance geometry and dynamical simulated annealing refinements were performed to produce a final family of 20 structures without constraint violations, along with an energy-minimized average structure. The protein structure is well-defined (0.66 and 0.97 D rmsd for backbone and all heavy atoms, respectively) with a compact hydrophobic core and several extending loops. A large hydrophobic patch, containing four aromatic rings and other aliphatic residues, makes up a large area of one side of the protein. CsE-v5 shows secondary structural features characteristic of long-chain scorpion toxins: a two and a half-turn alpha-helix, a three-strand antiparallel beta-sheet, and four beta-turns. Among the proteins studied to date from the CsE venom, CsE-v5 is the most compact protein with nearly 50% of the amide protons having long exchange lifetimes, but CsE-v5 is unusual in that it has loop structures similar to both Old and New World toxins. Further, it also lacks prolines in its C-terminal 14 residues. It shows some important differences with respect to CsE-V not only in its primary sequence, but also in its electrostatic potential surface, especially around areas in register with residues 8, 9, 17, 18, 32, 43, and 57. The loss of anti-mammal activity in CsE-v5 and the differences in its anti-insect activity compared to that of other proteins such as CsE-V, v1, and v3 from this New World scorpion may be related to residue variations at these locations.  相似文献   

4.
5.
The three dimensional structure of a 32 residue three disulfide scorpion toxin, BTK-2, from the Indian red scorpion Mesobuthus tamulus has been determined using isotope edited solution NMR methods. Samples for structural and electrophysiological studies were prepared using recombinant DNA methods. Electrophysiological studies show that the peptide is active against hK(v)1.1 channels. The structure of BTK-2 was determined using 373 distance restraints from NOE data, 66 dihedral angle restraints from NOE, chemical shift and scalar coupling data, 6 constraints based on disulfide linkages and 8 constraints based on hydrogen bonds. The root mean square deviation (r.m.s.d) about the averaged co-ordinates of the backbone (N, C(α), C') and all heavy atoms are 0.81 ± 0.23? and 1.51 ± 0.29? respectively. The backbone dihedral angles (? and ψ) for all residues occupy the favorable and allowed regions of the Ramachandran map. The three dimensional structure of BTK-2 is composed of three well defined secondary structural regions that constitute the α-β-β structural motif. Comparisons between the structure of BTK-2 and other closely related scorpion toxins pointed towards distinct differences in surface properties that provide insights into the structure-function relationships among this important class of voltage-gated potassium channel inhibiting peptides.  相似文献   

6.
1. The effects of Tityus serrulatus scorpion venom and its most important toxin (toxin gamma) were investigated on isolated guinea-pig hearts, perfused with Locke solution, by the Langendorff's method. 2. The cardiac contraction, the coronary flow and the electrocardiogram (ECG) were simultaneously recorded. 3. Bolus injections of 25, 50 or 100 micrograms of scorpion venom and 2.5, 5 or 10 micrograms of toxin gamma in the heart evoked complex effects which were divided into 3 phases: an initial phase (tachycardia or bradycardia associated with an increase in contractile force), an intermediate phase (oscillations of cardiac rate, contractile force and coronary flow, due to wandering pacemakers) and a third phase (sinus tachycardia). 4. The bradycardia and the oscillations of rhythm were prevented by atropine, whereas the tachycardia and the increase in contractile force were prevented either by reserpine or propranolol. 5. Scorpion venom or toxin gamma induced a ST segment displacement in the ECG, explained by a transitory myocardial hypoxia, due to an increase in the contractile force and a simultaneous decrease of the coronary flow. 6. Perfusion of the heart with Locke solution containing 2% scorpion antivenom prevented almost totally the effects elicited by the venom. 7. It is concluded that the complex effects induced by scorpion venom and toxin gamma are due to the simultaneous release of acetylcholine and catecholamines from postganglionic nerve fibers in the heart.  相似文献   

7.
Restoration of chloride conductance via introduction of an anion-selective pore, formed by a channel-forming peptide, has been hypothesized as a novel treatment modality for patients with cystic fibrosis. Delivery of these peptides from an aqueous environment in the absence of organic solvents is paramount. M2GlyR peptides, designed based on the glycine receptor, insert into lipid bilayers and polarized epithelial cells and assemble spontaneously into chloride-conducting pores. Addition of 4 lysine residues to either terminus increases the solubility of M2GlyR peptides. Both orientations of the helix within the membrane form an anion-selective pore, however, differences in solubility, associations and channel-forming activity are observed. To determine how the positioning of the lysine residues affects these properties, structural characteristics of the lysyl-modified peptides were explored utilizing chemical cross-linking, NMR and molecular modeling. Initial model structures of the a-helical peptides predict that lysine residues at the COOH-terminus form a capping structure by folding back to form hydrogen bonds with backbone carbonyl groups and hydroxyl side chains of residues in the helical segment of the peptide. In contrast, lysine residues at the NH2-terminus form fewer H-bonds and extend away from the helical backbone. Results from NMR and chemical cross-linking support the model structures. The C-cap formed by H-bonding of lysine residues is likely to account for the different biophysical properties observed between NH2- and COOH-terminal-modified M2GlyR peptides.  相似文献   

8.
According to the "protein only" hypothesis, a conformational conversion of the non-pathogenic "cellular" prion isoform into a pathogenic "scrapie" isoform is the fundamental event in the onset of prion diseases. During this pathogenic conversion, helix H1 and two adjacent surface loops L2 and L3 of the normal prion protein are thought to undergo a conformational transition into an extended beta-like structure, which is prompted by interactions with the pre-existing beta-sheet. To get more insight into the interaction between the helix and one of the beta-strands in the partially unfolded prion protein, the solution structure of a synthetic linear peptide spanning helix H1 and beta-strand S2 (residues 142-166 in human numbering) was studied by circular dichroism and nuclear magnetic resonance spectroscopies. We found that, in contrast to many prion fragments studied earlier, this peptide (i) is highly soluble and does not aggregate up to a millimolar concentration range in aqueous medium and (ii) exhibits an intrinsic propensity to a beta-hairpin like conformation at neutral pH. This beta-propensity can be one of the internal driving forces of the molecular rearrangement responsible for the pathogenic conversion of the prion protein.  相似文献   

9.
The synthesis and pharmacological activity of novel nociceptin/orphanin FQ (N/OFQ) analogues modified in the Phe(1)-Gly(2) peptide bond are reported. The aim of the present work was to elucidate the importance of this peptide bond for the N/OFQ receptor (NOP) interaction. Our study indicates that the first peptide bond in N/OFQ is important but not crucial for interaction with the N/OFQ receptor; for instance, substitution with a methyleneoxy bond generates an agonist derivative just 3-fold less potent than the reference compound.  相似文献   

10.
A series of conformationally-restricted analogues of hPTH was prepared, based on the parent peptide agonist, cyclo(Lys(18)-Asp(22))[Ala(1),Nle(8),Lys(18),Asp(22),Leu(27)]hPTH(1-31)NH(2) (2, EC(50)=0.29nM). Truncation of 2 at either the N- or C-termini resulted in peptides with reduced agonist activity as measured by stimulation of adenylate cyclase activity in the rat osteosarcoma cell line (ROS 17/2.8). Alanine- and glycine-scanning at the N-terminus of 2 was consistent with data previously obtained on linear hPTH(1-34). Other locations within the primary sequence of hPTH(1-31)NH(2) were evaluated by the placement of the [i, i+4] lactam constraining element. Ring size and lactam orientations at the 18-22 positions were also examined.  相似文献   

11.
Human chorionic gonadotropin (hCG) is an important biomarker in pregnancy and oncology, where it is routinely detected and quantified by specific immunoassays. Intelligent epitope selection is essential to achieving the required assay performance. We present binding affinity measurements demonstrating that a typical β3-loop-specific monoclonal antibody (8G5) is highly selective in competitive immunoassays and distinguishes between hCGβ(66-80) and the closely related luteinizing hormone (LH) fragment LHβ(86-100), which differ only by a single amino acid residue. A combination of optical spectroscopic measurements and atomistic computer simulations on these free peptides reveals differences in turn type stabilized by specific hydrogen bonding motifs. We propose that these structural differences are the basis for the observed selectivity in the full protein.  相似文献   

12.
The purpose of this study was to characterize the biological activity of the synthetic rat growth hormone releasing factor analogue rGRF(1-29)NH2 and to compare its action on growth hormone (GH) release to that of authentic rGRF(1-43)OH. We first compared the concentration-response characteristics of the two peptides in static incubation, and then examined the reversibility and repeatability of the GH response in a perifusion system. Authentic rGRF(1-43)OH was significantly more potent in static incubation (EC50 = 3 x 10(-11) M) than the analogue (5 x 10(-11) M), whereas the reverse held true in perifusion. The shapes of the GH responses were similar for both peptides in the perifusion system. However, while the GH response to authentic rGRF was repeatable, the prior administration of rGRF(1-29)NH2 significantly reduced (greater than 50%) the GH response to the subsequent administration of either rGRF(1-29)NH2 or rGRF(1-43)OH. Thus authentic rGRF and the synthetic fragment may have different actions at the level of the GRF receptor or at a postreceptor (second messenger) step.  相似文献   

13.
All of the α-subgroups share similarity in their sequence and structure but different in the toxicity to various voltage-gated sodium channels (VGSCs). We modeled the first 3D structural model of the Od1 based on BmK M1 using homology modeling. The reliability of model for more investigation and compare to BmK M1 has been examined and confirmed. Then the model structure is further refined by energy minimization and molecular dynamics methods. The purpose of this modeling and simulation is comparison toxicity of two mentioned toxins by investigation structural feature of functional regions including core domain, 5-turn and C-terminal which make NC domain. In the one hand, it is intriguing that Od1 in comparison to BmK M1 shows same solvent accessible surface area (SASA) in 5-turn region but a little more exposed and feasibility (more SASA) in C-terminal region and key functional residues of C-terminal such as positive residues Arg58, lys62 and Arg (His)64. These data suggested that Od1 has similarity with BmK M1 but has more toxicity to sodium channel. In the other hand 5-turn proximity of C-terminal to 5-turn in BmK M1with cis peptide bond is less than Od1 without cis peptide bond which is a confirmation with experimental data about BmK M1.A better understanding of the 3-D structure of Od1and comparison to BmK M1 will be helpful for more investigation of functional characters action of natural toxins with a specialized role for VGSCs.  相似文献   

14.
The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.  相似文献   

15.
Hoh F  Cerdan R  Kaas Q  Nishi Y  Chiche L  Kubo S  Chino N  Kobayashi Y  Dumas C  Aumelas A 《Biochemistry》2004,43(48):15154-15168
Previous structural studies on the [Lys((-2))-Arg((-1))]endothelin-1 peptide (KR-ET-1), 540-fold less potent than ET-1, strongly suggested the presence of an intramolecular Arg(-1)-Asp(8) (R(-1)-D(8)) salt bridge that was also observed in the shorter [Lys((-2))-Arg((-1))-des(17-21)]endothelin-1 derivative (KR-CSH-ET). In addition, for these two analogues, we have shown that the Lys-Arg dipeptide, which belongs to the prosequence, significantly improves the formation of the native disulfide bonds (>or=96% instead of approximately 70% for ET-1). In contrast to what was inferred from NMR data, molecular dynamics simulations suggested that such an intramolecular salt bridge would be unstable. The KR-CSH-ET peptide has now been crystallized at pH 5.0 and its high-resolution structure determined ab initio at 1.13 A using direct methods. Unexpectedly, KR-CSH-ET was shown to be a head-to-tail symmetric dimer, and the overall interface involves two intermolecular R(-1)-D(8) salt bridges, a two-stranded antiparallel beta-sheet, and hydrophobic contacts. Molecular dynamics simulations carried out on this dimer clearly showed that the two intermolecular salt bridges were in this case very stable. Sedimentation equilibrium experiments unambiguously confirmed that KR-ET-1 and KR-CSH-ET also exist as dimers in solution at pH 5.0. On the basis of the new dimeric structure, previous NMR data were reinterpreted. Structure calculations were performed using 484 intramolecular and 38 intermolecular NMR-derived constraints. The solution and the X-ray structures of the dimer are very similar (mean rmsd of 0.85 A). Since the KR dipeptide at the N-terminus of KR-CSH-ET is present in the prosequence, it can be hypothesized that similar intermolecular salt bridges could be involved in the in vivo formation of the native disulfide bonds of ET-1. Therefore, it appears to be likely that the prosequence does assist the ET-1 folding in a chaperone-like manner before successive cleavages that yield the bioactive ET-1 hormone.  相似文献   

16.
Vasostatin-I, the natural fragment of chromogranin A-(1-76), is a neuropeptide able to kill a large variety of fungi and yeast cells in the micromolar range. We have examined the antifungal properties of synthetic vasostatin-I-related peptides. The most active shortest peptide, named chromofungin, corresponds to the sequence Arg(47)-Leu(66). Extensive (1)H NMR analysis revealed that it adopts a helical structure. The biophysical mechanism implicated in the interaction of chromofungin with fungi and yeast cells was studied, showing the penetration of this peptide with different lipid monolayers. In order to examine thoroughly the antifungal activity of chromofungin, confocal laser microscopy was used to demonstrate the ability of the rhodamine-labeled peptide to interact with the fungal cell wall, to cross the plasma membrane, and to accumulate in Aspergillus fumigatus, Alternaria brassicola, and Candida albicans. Our present data reveal that chromofungin inhibits calcineurin activity, extending a previous observation that the N-terminal region of chromogranin A interacts with calmodulin in the presence of calcium. Therefore, the destabilization of fungal wall and plasma membrane, together with the possible intracellular inhibition of calmodulin-dependent enzymes, is likely to represent the mechanism by which vasostatin-I and chromofungin exert antifungal activity.  相似文献   

17.
The in vitro activity of three polycationic peptides, cecropin A, melittin, and cecropin A-melittin hybrid peptide CA(1-7)M(2-9)NH2, alone and in combination with various clinically used antimicrobial agents, was investigated against 32 nosocomial isolates of Acinetobacter baumannii. Antimicrobial activities were measured by MIC, MBC and bacterial killing assay. The peptides demonstrated different ranges of inhibitory values: overall, the organisms were more susceptible to CA(1-7)M(2-9)NH2 (MIC range, 0.25-16 mg/l) than to cecropin A (0.50-32 mg/l) and melittin (0.50-32 mg/l). Synergy was observed when CA(1-7)M(2-9)NH2 and melittin were combined with beta-lactam antibiotics.  相似文献   

18.
The carbocyclic analogue of (E)-5-(2-bromovinyl)-2'-deoxyuridine, C-BVDU, is a very potent and selective anti-herpes-virus compound. In order to synthesize and study the properties of a DNA that contains C-BVDU, the 5'-triphosphate, C-BVDUTP was prepared and evaluated as a potential substrate of the E. coli Klenow DNA polymerase enzyme. Although C-BVDUTP proved to be a very poor substrate also of this enzyme, it could be incorporated up to 3.6% into the synthetic DNA, poly(dA-dT, C-BVDU). This level of substitution decreased significantly the template activity for DNA and RNA polymerases, as compared to that of poly(dA-dT).  相似文献   

19.
Mild acid treatment of in vitro translated cytochrome P-450(SCC) (pre-P-450(SCC] peptide cleaved the peptide into two fragments. Comparison of the sizes and the NH2-terminal amino acids of the fragments with those of the corresponding fragments from mature P-450(SCC) suggested that the prepiece of pre-P-450(SCC) was present at the NH2-terminal end of the peptide. This conclusion was confirmed by radio-sequencing of the NH2-terminal portion of pre-P-450(SCC).  相似文献   

20.
The activity against human cancer cell lines including ovarian: A2780, A2780(cisR), cell up take, DNA-binding and nature of interaction with pBR322 plasmid DNA have been studied for four multinuclear complexes code named DH4Cl, DH5Cl, DH6Cl and DH7Cl, having the general formula: [[trans-PtCl(NH(3))(2)](2)mu-[trans-Pd(NH(3))(2)-(H(2)N(CH(2))(n)NH(2))(2)]]Cl(4) where n=4, 5, 6 and 7 for DH4Cl, DH5Cl, DH6Cl and DH7Cl, respectively. The compounds are found to exhibit significant anticancer activity against ovarian cancer cell lines: A2780, A2780(cisR) and A2780(ZD0473R). DH6Cl in which the linking diamine has six carbon atoms is found to be the most active compound. As the number of carbon atoms in the linking diamine is decreased below six and increased above six, the activity is found to decrease, illustrating structure-activity relationship. All the multinuclear compounds are believed to form a plethora of long-range interstrand GG adducts with DNA dictated by the sequence of bases in the DNA strands. Increasing prevention of BamH1 digestion with the increase in concentration of the compounds is due to global changes in DNA conformation brought about by interstrand long-range binding of the compounds with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号