首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
小麦抗白粉病基因Pm21的分子鉴定和标记辅助选择   总被引:26,自引:4,他引:26  
刘志勇  李洪杰 《遗传学报》1999,26(6):673-682
利用小麦抗白粉病基因Pm21的RAPD标记、SCAR标记和荧光源位杂交技术对小麦抗病育种材料中的抗白粉病Pm21基因进行了分子鉴定和标记辅助选择。  相似文献   

2.
DNA分子标记在小麦抗条锈性遗传研究中的应用   总被引:5,自引:1,他引:4  
综述了近年来DNA分子标记在小麦抗条锈性遗传研究中的应用现状和潜力。内容涉及DNA分子标记在基因标记,基因克隆,遗传图谱构建和辅助选择育种等方面的应用,并列举了代表性实例,展望了DNA分子标记技术在小麦抗条锈病研究上的前景。  相似文献   

3.
抗条锈病基因Yr69对我国小麦条锈菌(Puccinia striiformis f. sp. tritici)小种具有广谱抗性,在小麦抗条锈病育种中具有重要价值。为提高分子标记辅助选择育种的效率,加快Yr69在小麦抗病育种中的应用,本研究利用条锈菌小种CYR34对包含340个小麦家系的‘Taichung29/CH7086’F9代RIL(Recombinant inbred line)群体进行接种鉴定,并利用BSA-SNP(Bulked segregant analysis-single nucleotide polymorphism)技术对其抗条锈病基因进行了重新定位。抗病鉴定结果显示,RIL群体中抗感病家系的数量呈双峰分布,‘CH7086’的条锈病抗性受一个主效位点控制。BSA-SNP基因分型结果表明,多态性SNP主要集中于小麦2AS染色体末端0~30Mb的染色体区段。在该基因组区段开发了208个SSR分子标记,利用抗感病小群体从中筛选到14个与Yr69连锁的分子标记。利用14个标记对340个RIL家系进行PCR扩增和分子作图,将Yr69定位于2AS111和2AS171之间约7.76...  相似文献   

4.
《生物学通报》2007,42(10):49-49
经过4年多的研究,巾国农业科学院作物科学研究所的一个课题组人工合成了小麦新种质CI108.发现其含有一个抗条锈病新基凼YrC108.并利州分子标记对该基因进行了染色体定位.该成果不仅为抗条锈病小麦育种提供了新抗源。而且为高效分子育种提供了选择标记。[第一段]  相似文献   

5.
来自粗山羊草抗条锈病基因的SSR标记   总被引:1,自引:0,他引:1  
张海泉  贾继增  杨虹  张宝石 《遗传》2008,30(4):491-494
从粗山羊草[Aegilops tauschii (Coss.) Schmal] Y201中鉴定出1个显性抗小麦条锈病基因, 暂定名为YrY201。应用分离群体分组法(BSA) 筛选到Xgwm273b、Xgwm37和wmc14标记, 与该基因之间的遗传距离分别为11.9、5.8和10.9 cM。根据连锁标记所在小麦微卫星图谱的位置, YrY201被定位在7DL染色体上。分析基因所在染色体的位置及抗病性特征, 认为YrY201是一个新的抗小麦条锈病基因,并可用于分子标记辅助选择。  相似文献   

6.
从小麦野生近缘属——粗山羊草中挖掘小麦条锈病抗病基因, 拓展小麦抗病性的遗传基础。利用抗小麦条锈病与感小麦条锈病的粗山羊草间杂交, 从粗山羊草[Aegilops tauschii (Coss.) Schmal] Y206中鉴定出1个显性抗小麦条锈病基因, 暂定名为YrY206。应用分离群体分组法(Bulked segregant analysis, BSA)筛选到Wmc11a、Xgwm71c、Xgwm161和Xgwm183标记, 与该基因之间的遗传距离分别为4.0、3.3、1.5和9.3 cM。根据连锁标记所在小麦微卫星图谱的位置, YrY206被定位在3DS染色体上。分析基因所在染色体的位置、抗病性特征, 认为YrY206是一个新的抗小麦条锈病基因。  相似文献   

7.
Ren Y  Li SR  Li J  Zhou Q  DU XY  Li TJ  Yang WY  Zheng YL 《遗传》2011,33(11):1263-1270
小麦条锈病是影响杂交小麦普及推广的重要因素。文章利用基因推导法和SSR分子标记技术,研究了温光型两系杂交小麦恢复系MR168的抗条锈性遗传规律及其控制基因染色体位置。结果表明,MR168对CY29、CY31、CY32、CY33等条锈菌生理小种表现高抗至免疫;对SY95-71/MR168杂交组合的正反交F1、BC1、F2和F3群体分单株接种鉴定显示,MR168对CY32号小种的抗性受1对显性核基因控制,该抗病基因来源于春小麦品种辽春10号。利用集群分离分析法(Bulked segregant analysis,BSA)和简单重复序列(Simple sequence repeat,SSR)分子标记分析抗病亲本MR168、感病亲本SY95-71及183个F2代单株,发现了与MR168抗条锈病基因连锁的5个微卫星标记Xgwm273、Xgwm18、Xbarc187、Xwmc269、Xwmc406,并将该基因初步定位在1BS着丝粒附近,暂命名为YrMR168;构建了包含YrMR168的SSR标记遗传图谱,距离YrMR168最近的两个微卫星位点是Xgwm18和Xbarc187,遗传距离分别为1.9 cM和2.4 cM,这两个微卫星标记可用于杂交小麦抗条锈病分子标记辅助育种。  相似文献   

8.
刘方慧  牛永春  邓晖  檀根甲 《遗传学报》2007,34(12):1123-1130
小麦农家品种赤壳(苏1900)对当前我国小麦条锈菌(Puccinia striiformis Westend.f.sp.tritici)多个流行小种均有较好抗性。遗传分析表明,该品种对条中32号小种的抗性是由一对显性基因控制。本文采用分离群体分析法(bulked segregant analysis,BSA)和微卫星多态性分析方法,对该基因进行了分子标记和定位研究。用Taichung29×赤壳的F2代分离群体建立抗、感DNA池,共筛选了400多对SSR引物,发现5个标记Xwmc44、Xgwm259、Xwmc367、Xcfa2292、Xbarc80在抗、感DNA池间与在抗、感亲本间同样具有多态性,它们均位于1BL染色体臂上。经用具有140株抗病株、60株感病株共200株植株的F2代分离群体进行的遗传连锁性检测,上述5个标记均与目的基因相连锁,遗传距离分别为8.3cM、9.1cM、17.2cM、20.6cM和31.6cM。用全套21个中国春缺-四体材料进行的检测进一步证实了这5个SSR标记均位于小麦1B染色体上。综合上述结果,将赤壳中的主效抗条锈病基因YrChk定位在1BL染色体臂上。与以前已定位于1B染色体上的抗条锈病基因的比较研究表明,YrChk基因可能是一个新的抗条锈病基因。小麦农家品种中抗病基因资源的发掘和利用将有助于提高我国小麦生产品种中的抗病基因丰富度,有助于改善长期以来小麦生产品种中抗病基因单一化的局面。  相似文献   

9.
滨麦抗条锈病基因的染色体定位和分子标记   总被引:15,自引:1,他引:15  
从滨麦与普通小麦杂交后代中筛选到一条抗条锈病的小滨麦品系93784。以滨麦基因组DNA为探针的荧光原位杂交结果表明,93784是小麦与滨麦的小片段易位系,易位的滨麦染色体片段位于一对小麦染色体的短臂端部,利用该易位系构建了F2分离群体,进行F2单株成株期抗条锈鉴定,抗性分析证明,小滨麦93784中的抗条锈病基因是单基因控制的,位于滨麦染色体的易位片段上,命名为YrLm。进一步采用24对TaqⅠ(T1-T4)/PstⅠd(P1-P6)引物组合对抗感亲本及F2分离群体进行AFLP分析,筛选出一个与抗条锈病基因YrLm连锁的AFLP分子标记,经克隆和测序,该标记片段长度为205bp,定名为P1T3205。  相似文献   

10.
将近缘植物的抗病基因导入小麦是改良小麦抗病性的重要途径之一,对其外源染色体进行准确鉴定能够提高外源基因的选择与利用效率。本研究分别利用小麦白粉病、条锈病菌生理小种接种、荧光原位杂交和分子标记的方法对来源于中间偃麦草的部分双二倍体TAI7047为中间亲本创制的新种质CH357进行了鉴定分析。结果显示,CH357是一个小麦-中间偃麦草6JS/6B代换系,兼抗小麦白粉病、条锈病2种病害,其抗性可能来源于中间偃麦草的6JS染色体,可以作为一个小麦白粉病和条锈病新抗源进行小麦抗性遗传改良。基于中间偃麦草第6同源群Contig序列开发了160个STS标记,其中8个可作为识别小麦-中间偃麦草异代换系CH357中6JS染色体/片段的特异标记,为中间偃麦草6JS染色体/片段的鉴定提供较为经济和方便的检测手段。  相似文献   

11.
Available information on genetically assigned molecular markers is not sufficient for efficient construction of a high-density linkage map in wheat. Here, we report on application of high resolution melting (HRM) analysis using a real-time PCR apparatus to develop single nucleotide polymorphism (SNP) markers linked to a hybrid necrosis gene, Net2, located on wheat chromosome 2D. Based on genomic information on barley chromosome 2H and wheat expressed sequence tag libraries, we selected wheat cDNA sequences presumed to be located near the Net2 chromosomal region, and then found SNPs between the parental Ae. tauschii accessions of the synthetic wheat mapping population. HRM analysis of the PCR products from F(2) individuals' DNA enabled us to assign 44.4% of the SNP-representing cDNAs to chromosome 2D despite the presence of the A and B genomes. In addition, the designed SNP markers were assigned to chromosome 2D of Ae. tauschii. The order of the assigned SNP markers in synthetic hexaploid wheat was confirmed by comparison with the markers in barley and Ae. tauschii. Thus, the SNP-genotyping method based on HRM analysis is a useful tool for development of molecular markers at target loci in wheat.  相似文献   

12.
Thinopyrum elongatum is an important relative of wheat, it is favored by many researchers for the disease resistant genes that exist in its E genome. Some studies have showed that the 7E chromosome of Th. elongatum contains resistance genes related to Fusarium head blight and wheat rust. Therefore, developing 7E chromosome-specific molecular markers linked to resistance genes will provide an important tool for exploring and using the resistant genes of Th. elongatum. In addition, it would greatly contribute in the effort to cultivate disease-resistant wheat varieties. Featured in high throughput, high-accuracy and low-cost, SLAF-seq technology has been widely used in molecular breeding, system evolution, and germplasm resource detection. Based on SLAF-seq, 518 specific fragments on the 7E chromosome of Th. elongatum were successfully amplified. A total of 135 primers were designed according to 135 randomly selected fragments, and 89 specific molecular markers of Th. elongatum were developed, with efficiencies up to 65.9%. These markers were all detected in a variety of materials, and they are all proved to be specific and stable. These markers can be used not only for detecting the 7E chromosome of Th. elongatum but also for providing an important theoretical and practical basis for wheat breeding by marker-assisted selection (MAS). This paper reports the first application of SLAF-seq technology with a high success rate in developing specific molecular markers for Th. elongatum, providing a strong case for the application of this new technology.  相似文献   

13.
小麦是我国主要的粮食作物之一,籽粒中的低分子量麦谷蛋白对于小麦面包的加工品质具有重要的作用。近年来,利用分子标记技术检测小麦低分子量麦谷蛋白亚基(low molecular weight glutenin subunit,LMW-GS)的类型和组成已成为小麦品质改良的研究热点之一。主要综述了小麦低分子量麦谷蛋白亚基基因和蛋白质的结构特征、分类以及功能标记的研究进展,讨论了开发利用小麦Glu-A3、Glu-B3、Glu-D3位点LMW-GS功能标记的意义及存在的问题,并强调了LMW-GS分子标记检测技术的革新及亚基类型的完善对小麦品质改良的重要性,以期加速LMW-GS功能标记在优质小麦育种工作中的应用进程。  相似文献   

14.
Functional markers in wheat: current status and future prospects   总被引:10,自引:0,他引:10  
Functional markers (FM) are developed from sequence polymorphisms present in allelic variants of a functional gene at a locus. FMs accurately discriminate alleles of a targeted gene, and are ideal molecular markers for marker-assisted selection in wheat breeding. In this paper, we summarize FMs developed and used in common wheat. To date, more than 30 wheat loci associated with processing quality, agronomic traits, and disease resistance, have been cloned, and 97 FMs were developed to identify 93 alleles based on the sequences of those genes. A general approach is described for isolation of wheat genes and development of FMs based on in silico cloning and comparative genomics. The divergence of DNA sequences of different alleles that affect gene function is summarized. In addition, 14 molecular markers specific for alien genes introduced from common wheat relatives were also described. This paper provides updated information on all FMs and gene-specific STS markers developed so far in wheat and should facilitate their application in wheat breeding programs.  相似文献   

15.
Because of its wide geographical adaptation and importance in human nutrition, wheat is one of the most important crops in the world. However, wheat yield has reduced due to drought stress posing threat to sustainability and world food security in agricultural production. The first stage of drought tolerant variety breeding occurs on the molecular and biochemical characterization and classification of wheat genotypes. The aim of the present study is characterization of widely grown bread wheat cultivars and breeding lines for drought tolerance so as to be adapted to different regions in Turkey. The genotypes were screened with molecular markers for the presence of QTLs mapped to different chromosomes. Results of the molecular studies identified and detected 15 polymorphic SSR markers which gave the clearest PCR bands among the control genotypes. At the end of the research, bread wheat genotypes which were classified for tolerance or sensitivity to drought and the genetic similarity within control varieties were determined by molecular markers. According to SSR based dendrogram, two main groups were obtained for drought tolerance. At end of the molecular screening with SSR primers, genetic similarity coefficients were obtained that ranged from 0.14 to 0.71. The ones numbered 8 and 11 were the closest genotypes to drought tolerant cultivar Gerek 79 and the furthest genotypes from this cultivar were number 16 and to drought sensitive cultivar Sultan 95. The genotypes as drought tolerance due to their SSR markers scores are expected to provide useful information for drought related molecular breeding studies.  相似文献   

16.
Microsatellites or simple sequence repeats (SSRs) are highly useful molecular markers for plant improvement. Expressed sequence tag (EST)-SSR markers have a higher rate of transferability across species than genomic SSR markers and are thus well suited for application in cross-species phylogenetic studies. Our objectives were to examine the amplification of tall fescue EST-SSR markers in 12 grass species representing 8 genera of 4 tribes from 2 subfamilies of Poaceae and the applicability of these markers for phylogenetic analysis of grass species. About 43% of the 145 EST-SSR primer pairs produced PCR bands in all 12 grass species and had high levels of polymorphism in all forage grasses studied. Thus, these markers will be useful in a variety of forage grass species, including the ones tested in this study. SSR marker data were useful in grouping genotypes within each species. Lolium temulentum, a potential model species for cool-season forage grasses, showed a close relation with the major Festuca-Lolium species in the study. Tall wheat grass was found to be closely related to hexaploid wheat, thereby confirming the known taxonomic relations between these species. While clustering of closely related species was found, the effectiveness of such data in evaluating distantly related species needs further investigations. The phylogenetic trees based on DNA sequences of selected SSR bands were in agreement with the phylogenetic relations based on length polymorphism of SSRs markers. Tall fescue EST-SSR markers depicted phylogenetic relations among a wide range of cool-season forage grass species and thus are an important resource for researchers working with such grass species.  相似文献   

17.
Triticale (X Triticosecale Wittm.) is a hybrid derived by crossing wheat (Triticum sp.) and rye (Secale sp.). Till date, only a limited number of simple sequence repeat (SSRs) markers have been used in triticale molecular analyses and there is a need to identify dedicated high-throughput molecular markers to better exploit this crop. The objective of this study was to develop and evaluate diversity arrays technology (DArT) markers in triticale. DArT marker technology offers a high level of multiplexing. Development of new markers from triticale accessions was combined with mining the large collection of previously developed markers in rye and wheat. Three genotyping arrays were used to analyze a collection of 144 triticale accessions. The polymorphism level ranged from 8.6 to 23.8% for wheat and rye DArT markers, respectively. Among the polymorphic markers, rye markers were the most abundant (3,109) followed by wheat (2,214) and triticale (719). The mean polymorphism information content values were 0.34 for rye DArT markers and 0.37 for those from triticale and wheat. High correlation was observed between similarity matrices derived from rye, triticale, wheat and combined marker sets, as well as for the cophenetic values matrices. Cluster analysis revealed genetic relationships among the accessions consistent with the agronomic and pedigree information available. The newly developed triticale DArT markers as well as those originated from rye and wheat provide high quality markers that can be used for diversity analyses and might be exploited in a range of molecular breeding and genomics applications in triticale.  相似文献   

18.
Hexaploid triticale (x Triticosecale Wittmack) lines were examined using molecular markers and the hybridization in situ technique. Triticale lines were generated based on wheat varieties differing by the Vrn gene systems and the earing times. Molecular analysis was performed using Xgwm and Xrms microsatellite markers with the known chromosomal localization in the common wheat Triticum aestivum, and rye Secale cereale genomes. Comparative molecular analysis of triticale lines and their parental forms showed that all lines contained A and B genomes of common wheat and also rye homeologous chromosomes. In the three lines the presence of D genome markers, mapped to the chromosomes 2D and 7D, was demonstrated. This was probably the consequence of the translocations of homeologous chromosomes from wheat genomes, which took part during the process of triticale formation. The data obtained by use of genomic in situ hybridization supported the data of molecular genetic analysis. In none of the lines wheat--rye translocations or recombinations were observed. These findings suggest that the change of the period between the seedling appearance and earing time in triticale lines compared to the initial wheat lines, resulted from the inhibitory effect of rye genome on wheat vernalization genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号