首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circular dichroism (CD) spectra of a series of DNA . platinum complexes are presented. The following platinum compounds, [Pt(dien)Cl]Cl, cis-Pt(NH3)2Cl2, cis-Pt(en)Cl2, trans-Pt-(NH3)2Cl2, K[Pt(NH3)Cl3] and K2[PtCl4] were complexed with the DNA extracted from bacteria Micrococcus lysodeikticus (72% dG + dC), Escherichia coli (50% dG + dC), Clostridium perfringens (32% dG + dC) and salmon sperm (41% dG + dC). Strong differences were found between the different DNA . Pt complexes. Three types of spectra clearly demonstrate the different platinum binding modes on DNA. In the first type, the platinum compound, i.e. [Pt(dien)Cl]Cl, is fixed to DNA with only one bond (monofunctional complex formation) and no significant change of the CD positive band of DNA is found. The main feature of the second type is a continuous intensity decrease of the positive band as observed for trans-Pt(NH3)2Cl2 (trans-bidentate complex formation). The third type concerns the cis-bidentate platinum fixation obtained with cis-Pt(NH3)2Cl2, cis-Pt(en)Cl2, K[Pt(NH3)Cl3] and K2[PtCl4]. The CD spectra are in this case characterized by an increase in the positive Cotton effect which is dG + dC-dependent up to an rb value around 0.10 (where rb = number of platinum atoms bound per nucleotide), followed by a decrease until DNA saturation with platinum is reached. A linear decrease in the amplitude of the negative band is detected in all the complexes except in the case of the monofunctional DNA . Pt complexes. For the cis-bidentate and trans-bidentate platinum fixation, a continuous bathochromic shift occurs.  相似文献   

2.
The interaction between a novel aromatic thiolato derivative from the family of DNA-intercalating platinum complexes, phenylthiolato-(2,2',2"-terpyridine)platinum(II)-[PhS(ter py)Pt+], and nucleic acids was studied by using viscosity, equilibrium-dialysis and kinetic measurements. Viscosity measurements with sonicated DNA provide direct evidence for intercalation, and show that at binding ratios below 0.2 molecules per base-pair PhS(terpy)Pt+ causes an increase in contour length of 0.2 nm per bound molecule. However, helix extension diminishes at greater extents of binding, indicating the existence of additional, non-intercalated, externally bound forms of the ligand. The ability of PhS(terpy)Pt+ to aggregate in neutral aqueous buffers at a range of ionic strengths and temperatures was assessed by using optical-absorption methods. Scatchard plots for binding to calf thymus DNA at ionic strength 0.01 (corrected for dimerization) are curvilinear, concave upward, providing further evidence for two modes of binding. The association constant decreases at higher ionic strengths, in accord with the expectations of polyelectrolyte theory, although the number of cations released per bound unipositive ligand molecule is substantially greater than 1. Stopped-flow kinetic measurements confirm the complexity of the binding reaction by revealing multiple bound forms of the ligand whose kinetic processes are both fast and closely coupled. Thermal denaturation of DNA radically alters the shapes of binding isotherms and either has little effect on, or enhances, the affinity of potential binding sites, depending on experimental conditions. Scatchard plots for binding to natural DNA species with differing nucleotide composition show that the ligand has a requirement for a single G X C base-pair at the highest-affinity intercalation sites.  相似文献   

3.
 The compound [Pt(lysine)Cl2] (Kplatin) was previously identified in a study of platinum amino acid complexes as a potential antitumor drug candidate. The DNA binding properties, high mobility group (HMG)-domain protein affinity for the platinated DNA, and cytotoxicity against HeLa cells of Kplatin and three related (N,O) chelated platinum(II) amino acid complexes, [Pt(arginine)Cl2] (Rplatin), K[Pt(Ne-acetyllysine)Cl2] (NacKplatin), and K[Pt(norleucine)Cl2] (Norplatin), are reported. The four complexes have identical PtCl2(N,O) coordination environments. A new solid phase screening methodology was devised in which platinated DNA probes are covalently attached to a nylon support and tested for their ability to bind a fluorescently labeled HMG-domain protein. The fluorescent HMG-domain protein was generated by expressing a fusion of the green fluorescent protein (GFP) with recombinant rat HMG1. Binding revealed by the solid phase method correlated well with the results of gel mobility shift and HeLa cytotoxicity assays. These results suggest that the net charge on the complex, rather than the nature of the side chain, is the most important factor underlying the DNA binding properties and toxicity of amino acid (N,O) chelated platinum complexes. This property explains why Kplatin was previously selected from the pool of platinum amino acid complexes based on the ability of its DNA adducts to bind HMG1. Received: 3 February 1999 / Accepted: 7 April 1999  相似文献   

4.
The aim of this study was synthesis of two new water-soluble fluorescent palladium and platinum complexes with formulas of [Pt(DACH)(FIP)](NO3)2 and [Pd(DACH)(FIP)](NO3)2, respectively, where FIP is 2-(furan-2-yl)-1H-imidazo[4,5-f][1,10] phenanthroline and DACH is 1R,2R-diaminocyclohexane. Fluorescence spectroscopy, circular dichroism (CD), thermal denaturation measurement, ionic strength, and kinetic study displayed groove binding of Pt complex on DNA, while due to binding of Pd complex, B form of DNA convert to Z form. Due to electrostatic interaction of Pd complex with DNA, the DNA form is converted and it provides enough space for Pd complex to insert between base stacking of DNA. UV–vis study shows two complexes could denature the DNA at low concentrations in exothermic process and Pt complex is more active than Pd complex. Finally, the anticancer and growth inhibitory activities of synthesized complexes were investigated against human colon cancer cell line HCT116 after incubation time of 24 h using MTT assay and higher activity was observed for the platinum complex. Interaction of the two metal derivative complexes was studied by molecular docking and molecular dynamics simulation. The results showed that Pt complexes have higher negative docking energy and higher tendency for interaction with DNA, and exert more structural change on DNA.  相似文献   

5.
Antibodies reactive to (1R,2R)-cyclohexanediamineplatinum(II)-DNA ((1R,2R)-cyclohexanediamine: 1R,2R-dach) adducts were elicited by immunization of rabbit with calf thymus DNA modified by Pt(1R,2R-dach)Cl2 at a ratio of bound platinum per nucleotide ((D/N)b) of 0.0335. In an enzyme-linked immunosorbent assay (ELISA), the binding of specific antibodies to Pt(1R,2R-dach)-DNA adduct (60 microliters of 1.235 x 10(-7) M Pt in each wells) on the assay plate was competitively inhibited by Pt(1R,2R-dach)-DNA adduct ((D/N)b = 0.0653) in the solution. Almost equal inhibition was observed with Pt(1S,2S-dach)-DNA ((D/N)b = 0.0412), an optical isomer of 1R,2R-dach. Pt(1R,2S-dach)-DNA ((D/N)b = 0.0371) and Pt(1R,3S-dach)-DNA ((D/N)b = 0.0281) in which the cyclohexane ring is stereochemically perpendicular to the platinum chelate plane, also inhibited antibody binding, but these adducts gave only incomplete inhibition at higher Pt-DNA adduct concentrations. Although Pt(1R,2R-dach)-d(GpG) and Pt(1R,2R-dach)(NH3)2 inhibited antibody binding, the affinity of the antibody for Pt(1R,2R-dach)(NH3)2 was lower than with Pt(1R,2R-dach)-DNA, and the inhibition behavior of Pt(1R,2R-dach)-d(GpG) was biphasic, i.e., at the lower concentration the inhibition curve was consistent with that of Pt(1R,2R-dach)-DNA, but at the higher concentration it shifted to that of Pt(1R,2R-dach)(NH3)2. The affinity of the antibody for cis-DDP was markedly lower than with Pt(1R,2R-dach)(NH3)2. These facts suggest that the antibodies may bind to the substituents (the platinum and its surroundings) of the various Pt complexes rather than the DNA structure altered by platinum binding.  相似文献   

6.
The optical properties of the DNA complexes with divalent platinum compounds of the cis-diamine type differing both in the nature of anionic and neutral ligands and in the spatial arrangement about the platinum atom were studied. The platinum compounds cis-[Pt(NH3)2Cl2], [Pt(en)Cl2], [Pt(tetrameen)Cl2], cis-[Pt(NH3)2NO2Cl], and cis-[PtNH3(Bz)Cl2] at small values of r (r is the molar ratio of a platinum compound to DNA nucleotides in the reaction mixture) were found to induce an increase in the amplitude of the positive band in the circular dichroic (CD) spectrum of linear DNA. All the compounds listed except cis-[Pt(NH3)2NO2Cl] caused a sharp decrease of the amplitude of the negative band in the CD spectrum of a liquid crystalline microphase of DNA formed in solution in the presence of poly(ethylene glycol). All these platinum compounds (except [Pt(tetrameen)Cl2]) exhibit biological (antimitotic, antitumour, etc.) activity. The platinum compounds trans-[Pt(NH3)Cl2], trans-[Pt(NH3)2NO2Cl], cis-[PtNH3PyCl2], cis-[Pt(NH3)2(NO2)2], and [Pt(NH3)3Cl]Cl exhibiting a low (if any) biological activity, either induced a decrease of the amplitude of the positive band in the CD spectrum of linear DNA, or did not affect the CD spectrum at all. The effect of these platinum compounds on the CD spectrum of the liquid crystalline microphase of DNA was either weak or absent. It is assumed that the specific biological action of platinum compounds of the cis-diamine type is determined by the polydentate binding to DNA: in addition to the cis-bidentate covalent binding of platinum to DNA nitrogen bases, a hydrogen bond formation between the DNA and cis-amino ligands occurs by means of protons at nitrogen atoms.  相似文献   

7.
Four platinum(II) aminobenzamidine complexes have been prepared and characterized by IR and 1H and 13C NMR spectroscopy, and tested for their ability to interact with the nicked and closed circular forms of the pUC8 plasmid DNA. The results show that the complexes of formula [Pt(LH)2Cl2]2X have a cis- geometry with an amino-Pt bonding, where L is either p- or m-aminobenzamidine and where 2X is 2Cl- or PtCl4(2-). It was observed that these complexes significantly alter the electrophoretic mobility of nicked and closed circular forms of DNA and that the alteration in electrophoretic mobility due to Pt(II)-p-aminobenzamidine binding is higher than that due to Pt(II)-m-aminobenzamidine. No difference in mobility was observed whether the DNA interacted with complexes having as counteranion Cl- or PtCl4(2-). The synthesized compounds were, in addition, assayed for antitumor activity in vitro against colon (CX-1), lung (LX-1), and mammary (MX-1) human tumor cells. The results show that these complexes inhibited the multiplication of the tumor cells and that they show higher specificity for lung cells.  相似文献   

8.
9.
10.
Polynuclear platinum compounds demonstrate many novel phenomena in their interactions with DNA and proteins as well as novel anti-cancer activities. Previous studies indicated that the high positive charge and the non-coordinated "central linker" of the polynuclear compounds could have major contributions to these features. Therefore, a series of non-covalent polynuclear platinum complexes, [[Pt(NH(3))(3)](2)-mu-Y](n+) (Y=polyamine linker or [trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2)]) was synthesized and the DNA interactions of these platinum complexes were investigated. The conformational changes induced by these compounds in polymer DNA were studied by circular dichroism and the reversibility of the transition was tested by subsequent titration with the DNA intercalating agent ethidium bromide (EtBr). Fluorescent quenching was also used to assess the ability of EtBr to intercalate into A and Z-DNA induced by the compounds. The non-covalent polynuclear platinum complexes induced both B-->A and B-->Z conformational changes in polymer DNA. These conformational changes were partially irreversible. The platinum compound with the spermidine linker, [[Pt(NH(3))(3)](2)-mu-spermidine-N(1),N(8)]Cl(5).2H(2)O, is more efficient in inducing the conformational changes of DNA and it is less reversible than complexes with other linkers. The melting point study showed that the non-covalent polynuclear platinum complexes stabilized the duplex DNA and the higher the electrical charge of the complexes the greater the stabilization observed.  相似文献   

11.
B E Bowler  S J Lippard 《Biochemistry》1986,25(10):3031-3038
We report the DNA binding site preferences of the novel molecule AO-Pt, in which the anticancer drug dichloro(ethylenediamine)platinum(II) is linked by a hexamethylene chain to acridine orange. The sequence specificity of platinum binding was mapped by exonuclease III digestion of 165 and 335 base pair restriction fragments from pBR322 DNA. Parallel studies were carried out with the unmodified anticancer drugs cis-diamminedichloroplatinum(II) (cis-DDP) and dichloro(ethylenediamine)platinum(II), [Pt(en)Cl2]. Oligo(dG) sequences are the most prevalent binding sites for AO-Pt, with secondary binding occurring mainly at d(AG) sites. cis-DDP and [Pt(en)Cl2] bind less readily to the secondary sequences, with cis-DDP showing greater binding site selectivity than [Pt(en)Cl2]. The DNA intercalator ethidium bromide promotes binding of [Pt(en)Cl2] and cis-DDP to many sites containing d(CGG) and, to a lesser extent, d(AG) sequences. AO-Pt exhibits enhanced binding to these sequences without the need for an external intercalator. Unlinked acridine orange, however, does not promote binding of [Pt(en)Cl2] and cis-DDP to d(CGG) and d(AG) sequences. These results are discussed in terms of the sequence preferences, stereochemistry, and relative residence times of the intercalators at their DNA binding sites. By modulating local structure in a sequence-dependent manner, both linked and, in the case of ethidium, free intercalators can influence the regioselectivity of covalent modification of DNA by platinum antitumor drugs.  相似文献   

12.
The interaction of the anti-tumour active cis platinum (II) complexes with DNA has been investigated using dichloro(ethylenediamine)platinum(II) and E. coli DNA. Equilibrium dialysis studies indicate that Pt(en)Cl2 binds reversibly to DNA to a saturation value of 0.57 Pt: P, which is consistent with the platinum being bound both monofunctionally and bifunctionally. Pt(en)Cl2 inhibits the intercalation of 9-aminoacridine (9AA) by cross-linking the bases of the double helix, but at no stage does all the bound platinum cross-link. It is suggested that this inhibition of intercalation is due to intrastrand cross-linking.  相似文献   

13.
J K Barton  S J Lippard 《Biochemistry》1979,18(12):2661-2668
The cationic complex (2-hydroxyethanethiolato)(2,2',2'-terpyridine)platinum(II), [(terpy)Pt(HET)]+, binds cooperatively to poly(A).poly(U) by intercalation. The melting temperature of poly(A).poly(U) in low-salt buffer is increased by 6 degrees C in the presence of [(terpy)Pt(HET)]+, indicating stabilization of the duplex structure by the bound platinum reagent. Viscosity measurements provide evidence for comparable lengthening of the polynucleotide in the presence of [(terpy)Pt(HET)]+ and the intercalating dye, ethidium bromide. Scatchard plots of the binding of [(terpy)Pt(HET)]+ to poly(A).poly(U) and poly(I).poly(C), determined through ultracentrifugation pelleting methods, show large positive curvature, reflecting the strong cooperativity associated with the platinum complex-RNA interaction. The characteristics of the binding isotherms are interpreted in terms of a model where cooperative pair units of [(terpy)Pt(HET)]+ intercalate into the double-stranded polymer. At saturation, two platinum molecules are bound for every three base pairs. This stoichiometry may be compared with the nearest-neighbor-exclusion binding observed previously in the interaction of [(terpy)Pt(HET)]+ and the ethidium cation with DNA, in which one intercalator occupies every other interbase-pair site at saturation. The striking differences observed in the interaction of [(terpy)Pt(HET)]+ with DNA and RNA suggest that drug recognition is sensitive to the constraints imposed by nucleic acid secondary structure.  相似文献   

14.
The sequence specificity and intensity of DNA damage induced by six peptide-tethered platinum complexes was compared to cisplatin and Pt(en)Cl(2). DNA damage was investigated in pUC19 plasmid and in intact HeLa cells, and quantitatively analyzed using a Taq DNA polymerase/linear amplification assay. The DNA sequence specificity of the peptide-platinum compounds was found to be very similar to cisplatin and Pt(en)Cl(2), with runs of consecutive guanines being the most intensely damaged sites. The observed reactivity of the peptide-platinum complexes towards plasmid DNA was lower compared to cisplatin and Pt(en)Cl(2), with the glycine-tethered complex 3 and the phenylalanine-tethered complex 4 producing the highest relative damage intensity, followed by (in decreasing order) lysine-tethered (5), arginine-tethered (6), serine-tethered (7) and glutamate-tethered (8). The reactivity of the peptide-platinum complexes towards cellular DNA was also lower compared to cisplatin and Pt(en)Cl(2). For most investigated complexes, the relative damage intensities were found to be similar in cells compared to plasmid DNA, but were greatly reduced for 3 and 4. The lysine-tethered 5 complex produced the highest DNA damage intensity in cells followed by (in decreasing order) 6, 7, 3, 4 and 8.  相似文献   

15.
The optical properties of the DNA complexes with the compounds of bivalent platinum were studied. The compounds differed by the nature of the anionic and neutral ligands and their spatial arrangement about the platinum atom. It was shown that the same as cis-[Pt (NH3)2Cl2] the platinum compounds with the biological activity, i.e. [Pt (en) Cl2], cis-[PtNH3 (Bz) Cl2] and cis-[Pt (NH3)2NO2Cl] induced at low values of r (a ratio of the number of the platinum moles added to the number of the DNA nucleotide moles in the solution) an increase in the amplitude of the positive band in the spectrum of the circular dichroism (CD) of the linear DNA and a marked decrease in the amplitude of the negative band in the spectrum of the CD of the liquid crystalline microphase of DNA formed in the presence of polyethyleneglycol. By the character of the action on the CD spectrum of the linear and condensed DNA [Pt (tetrameen)Cl2] which had no selective antimitotic effect might be referred to the above platinum compounds. Trans-[Pt (NH3)2NO2Cl], [PtNH3PyCl2], cis-[Pt (NH3)2(NO2)2] and [Pt (NH3)3Cl]Cl having no biological activity either induced only a decrease in the amplitude of the positive band in the CD spectrum of the linear DNA or had no effect on the CD spectrum. The effect of these compounds on the CD spectrum of the liquid crystalline microphase of DNA was slightly pronounced or not observed.  相似文献   

16.
The antitumor effects of platinum(IV) complexes, considered prodrugs for cisplatin, are believed to be due to biological reduction of Pt(IV) to Pt(II), with the reduction products binding to DNA and other cellular targets. In this work we used pBR322 DNA to capture the products of reduction of oxoplatin, c,t,c-[PtCl2(OH)2(NH3)2], 3, and a carboxylate-modified analog, c,t,c-[PtCl2(OH)(O2CCH2CH2CO2H)(NH3)2], 4, by ascorbic acid (AsA) or glutathione (GSH). Since carbonate plays a significant role in the speciation of platinum complexes in solution, we also investigated the effects of carbonate on the reduction/DNA-binding process. In pH 7.4 buffer in the absence of carbonate, both 3 and 4 are reduced by AsA to cisplatin (confirmed using 195Pt NMR), which binds to and unwinds closed circular DNA in a manner consistent with the formation of the well-known 1, 2 intrastrand DNA crosslink. However, when GSH is used as the reducing agent for 3 and 4, 195Pt NMR shows that cisplatin is not produced in the reaction medium. Although the Pt(II) products bind to closed circular DNA, their effect on the mobility of Form I DNA is different from that produced by cisplatin. When physiological carbonate is present in the reduction medium, 13C NMR shows that Pt(II) carbonato complexes form which block or impede platinum binding to DNA. The results of the study vis-à-vis the ability of the Pt(IV) complexes to act as prodrugs for cisplatin are discussed.  相似文献   

17.
The partial encapsulation of platinum(II)-based DNA intercalators of the type [Pt(5-Cl-phen)(ancillary ligand)](2+), where 5-Cl-phen is 5-chloro-1,10-phenanthroline and the ancillary ligand is ethylenediamine, (1S,2S)-diaminocyclohexane (S,S-dach) or (1R,2R)-diaminocyclohexane, within cucurbit[n]uril (CB[n], where n is 6, 7 or 8) has been examined by (1)H and (195)Pt NMR and mass spectrometry. For CB[7], the molecule encapsulates over the ancillary ligand of all metal complexes, whether this is ethylenediamine or diaminocyclohexane. For CB[8], encapsulation occurs over the sides of the 5-Cl-phen ligand at low [Pt(5-Cl-phen)(S,S-dach)](2+) (5CLSS) to CB[8] ratios (i.e. 0.25:1) but over the ancillary ligand at higher ratios (i.e. 2:1). For CB[6] binding, 5CLSS exhibits both portal and cavity binding, with the ancillary ligand displaying chemical shifts consistent with fast exchange kinetics on the NMR timescale for portal binding and slow exchange kinetics for cavity binding. Binding constants could not be determined using UV-vis, circular dichroism or fluorescence spectrophotometry, but a binding constant for binding of 5CLSS to CB[6] of approximately 10(5) M(-1) was determined using (1)H NMR. Finally, the effect of CB[n] encapsulation on the cytotoxicity of the metal complexes was examined using L1210 murine leukaemia cells in vitro growth inhibition assays. The cytotoxicity is highly dependent on both the metal complex and the CB[n] size, and whilst CB[7] and CB[8] generally decreased cytotoxicity, it was found that CB[6] increased the cyotoxicity of 5CLSS up to 2.5-fold.  相似文献   

18.
Ring-substituted diaqua(1,2-diphenylethylenediamine)platinum(II) sulfate shows unusual kinetics in its reaction with salmon testis DNA. The mechanism for diaqua[meso-1,2-bis(2,6-dichloro-4- hydroxyphenyl)ethylenediamine]platinum(II) sulfate, [Pt(H2O)2(meso-6)]2+SO4(2-), a representative of this series, has been investigated and compared with that for cis-[Pt(NH3)2(H2O)2]2+. Reactions were followed by atomic absorption, analytical HPLC of Pt-DNA digests, arrest of enzymatic DNA synthesis/degradation, ultraviolet and fluorescence spectrophotometry. Except for the formation of monofunctional DNA adducts, the kinetics of the platinum(II) complexes are comparable. The pseudo-first-order rate constant for the attack of DNA by [Pt(H2O)2(meso-6)]2+ follows the concentration of DNA in a hyperbolic fashion, which is in contrast to the linear dependence for cis-[Pt(NH3)2(H2O)2]2+. The hyperbolic dependence is typical for a dissociable DNA/drug complex preceding the coordination reaction. By studying the binding of free ligand to DNA, and by correlating ligand structures and electrostatic charges with effects on adduct formation, both the phenyl residues and the positive charge of the platinum(II) complex are shown to be crucial for the stability of the dissociable complex. A non-intercalative mode of binding to the DNA backbone is suggested. At the high concentrations of DNA found in cell nuclei, the reaction of the dissociable complex can, principally, become rate-limiting in the attack of DNA and thus reduce the cytotoxic efficiency of a drug.  相似文献   

19.
20.
Abstract

The synthesis and chemical characterization of two structurally related platinum(II) and palladium(II) complexes, [M(2,2′-bipyridine)(morpholinedithiocarbamate)]NO3 or [M(bpy) (mor-dtc)]NO3, where M = Pt(II) or Pd(II), are described. Studies of anti-tumor activities of these complexes against human cell tumor lines (K562) have been carried out. They show 50% cytotoxic concentration (Cc50) values much lower than that of cisplatin. Both of these water soluble complexes have been shown to interact with calf thymus DNA (ct-DNA) using difference absorption-, fluorescence-, and circular dichroism-titration techniques. These studies showed that both complexes exhibit cooperative binding and presumably intercalate in DNA. These complexes unexpectedly denature DNA at very low concentrations (50–100 μM). Several binding and thermodynamic parameters are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号