首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synechocystis: sp. PCC 6803 is a unicellular motile cyanobacterium, which shows positive or negative phototaxis on agar plates under lateral illumination. By gene disruption in a substrain showing of positive phototaxis, it was demonstrated that mutants defective in sll0038, sll0039, sll0041, sll0042 or sll0043 lost positive phototaxis but showed negative phototaxis away from the light source. Mutants of sll0040, which is located within the cluster of these genes, retained the capacity of positive phototaxis but to a lesser extent than the parent cells. These genes are homologous to che genes, which are involved in flagellar switching for bacterial chemotaxis. Interestingly, sll0041 (designated pisJ1) is predicted to have a chromophore-binding motif of phytochrome-like proteins and a signaling motif of chemoreceptors for bacterial chemotaxis. It is strongly suggested that the positive phototactic response was mediated by a phytochrome-like photoreceptor and CheA/CheY-type signal transduction system.  相似文献   

2.
Kirik IA  Babykin MM 《Genetika》2008,44(5):717-720
The sll0886 gene, controlling light-activated heterotrophic growth (LAHG), was tested for the role in regulating phototaxis in cyanobacterium Synechocystis sp. PCC 6803. Insertional inactivation of the gene in the genome of a wildtype strain did not affect positive (toward light) or negative (away from high light) phototaxis. However, cells lost motility when sll0886 inactivation was combined with the prqRL17Q mutation, which determined negative phototaxis at low light. Immotile cells with the prqRL17Q mutation and the inactivated sll0886 gene did not display any defect in the formation of type IV pili, essential for phototaxis. Hence, the function, rather than biogenesis, of pili was affected. It was concluded that the sll0886 gene, coding for a TPR family protein, is involved in controlling negative phototaxis of cyanobacteria at the level of photoreception and signal transduction and that its role is mediated by the unidentified redundant gene whose function is suppressed by the prqRL17Q mutation.  相似文献   

3.
Social gliding motility in Myxococcus xanthus depends on the presence of Type IV pili. To begin to examine the role of pili in social motility, 17 mutants were identified which had lost social motility, but still expressed pili. Four of these mutants carry point mutations which mapped to a locus upstream of the recently identified pilS , pilR , and pilA genes. Sequencing of this locus revealed a gene with homology to pilT from Pseudomonas aeruginosa . Sequencing of the four point mutations revealed that they occurred within the M. xanthus pilT locus. A markerless deletion within M. xanthus pilT , similar to the four point mutations, disrupted social gliding behaviour but did not interfere with pilus formation or pilus-dependent cell–cell agglutination. Using time-lapse videomicroscopy, residual social motility was observed in dsp strains (known to be deficient in fibril but not pilus production); this was not observed in a Δ pilT dsp double mutant. Two genes flanking pilT  were also sequenced, and found to have homology to pilB and pilC from P. aeruginosa . Markerless deletions within these genes caused both pilus and social-motility defects. These results indicate that M. xanthus pilB and pilC are required for pilus biogenesis, while pilT is required for assembled pili to play their role in social motility. Thus, pilB , pilT , pilC , pilS , pilR and pilA form a contiguous cluster of pil genes required for social motility.  相似文献   

4.
The sll0886 gene, controlling light-activated heterotrophic growth (LAHG), was tested for the role in regulation of phototaxis in cyanobacterium Synechocystis sp. PCC 6803. Insertional inactivation of the gene in the genome of a wild-type strain did not affect positive (toward light) or negative (away from high light) phototaxis. However, cells lost motility when sll0886 inactivation was combined with the prqRL17Q mutation, which determined negative phototaxis at low light. Immotile cells with the prqRL17Q mutation and the inactivated sll0886 gene did not display any defect in the formation of type IV pili, essential for phototaxis. Hence, the function, rather than biogenesis, of pili was affected. It was concluded that the sll0886 gene, coding for a TPR family protein, is involved in controlling negative phototaxis of cyanobacteria at the level of photoreception and signal transduction and that its role is shared with the unidentified redundant gene whose function is suppressed by the prqRL17Q mutation.  相似文献   

5.
In the complete annotated genome sequences of cyanobacterium Synechocystis sp. PCC 6803, one can find many putative genes for two-component response regulators that include a helix-turn-helix DNA-binding domain. The mRNA level of one of the putative genes, sll1330, was increased by glucose, especially in the presence of light. We successfully disrupted the sll1330 gene by targeted mutagenesis with a spectinomycin resistance cassette. Deltasll1330 could not grow well under light-activated heterotrophic growth conditions. Analyses of the expression of glycolytic genes revealed that the mRNA levels of five glycolytic genes, that is, glk (sll0593), pfkA (sll1196), fbaA (sll0018), gpmB (slr1124), and pk (sll0587), were decreased, and were regulated by Sll1330 under light and glucose-supplemented conditions. The Synechocystis sp. PCC 6803 genome each encodes two isozymes for these five glycolytic genes, suggesting that each of the two isozymes is regulated by Sll1330 at the mRNA level.  相似文献   

6.
7.
8.
In Synechocystis sp. PCC 6803, the flv4‐2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4‐2 operon mutants. In the ?sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ?sll0218‐flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ?sll0218 and ?sll0218‐flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218‐lacking mutants. The YFP‐tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA‐defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ?flv4‐2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting.  相似文献   

9.
10.
11.
12.
13.
The unicellular cyanobacterium, Synechocystis sp. PCC 6803 is motile. A homologue of the PilT protein family, required for twitching motility in Pseudomonas aeruginosa and social gliding motility in Myxococcus xanthus, was found to be necessarily associated with cyanobacterial motility. The pilT1 (slr0161) mutant shows a pleotropic phenotype, defects in individual cell motility, and an increased number of long surface pili. Furthermore, the mutant loses its ability of natural competency. These findings demonstrate that PilT1 is essential for both cell motility and competency. Since the pilT gene contains a consensus ATP-binding motif (Walker boxes), the PilT protein is suggested for supplying energy for cell motility. The product of pilT1, overproduced in Escherichia coli and purified by Ni-affinity chromatography, hydrolyzes ATP in vitro.  相似文献   

14.
Azoarcus sp. strain BH72, as an endophyte of grasses, depends on successful host colonization. Type IV pili are essential for mediating the initial interaction with rice roots. In the genome sequence analysis, the pilT gene was identified, which encodes for a putative type IV pilus retraction protein. PilT of Azoarcus sp. BH72 shares high similarity to PilT of the human pathogen Pseudomonas aeruginosa PAO1 (77% amino acid sequence identity) and contains a predicted nucleotide-binding motif. To gain more insights into the role of the type IV pili in the colonization process of Azoarcus spp., we constructed an insertional mutant of pilT and a deletion mutant of pilA, the major structural component of the pilus structure. The pilT mutant, as the pilin deletion mutant deltapilA, was abolished in twitching motility. Western blot analyses and electron microscopy studies demonstrated an enhanced piliation of the Azoarcus pilT mutant strain compared with the wild type, indicating that, indeed, PilT has a role in pilus retraction. Studies on rice root colonization in gnotobiotic cultures revealed that the establishment of microcolonies on the root surface was strongly reduced in the deltapilA mutant, whereas the surface colonization was reduced by only 50% in the nontwitching pilT mutant. However, endophytic colonization of rice roots was strongly reduced in both mutants. These results demonstrate that the retractile force mediated by PilT is not essential for the bacterial colonization of the plant surface, but that twitching motility is necessary for invasion of and establishment inside the plant. Thus, a novel determinant for endophytic interactions with grasses was identified.  相似文献   

15.
16.
The Pseudomonas aeruginosa inner membrane protein FimV is among several proteins of unknown function required for type IV pilus-mediated twitching motility, arising from extension and retraction of pili from their site of assembly in the inner membrane. The pili transit the periplasm and peptidoglycan (PG) layer, ultimately exiting the cell through the PilQ secretin. Although fimV mutants are nonmotile, they are susceptible to killing by pilus-specific bacteriophage, a hallmark of retractable surface pili. Here we show that levels of recoverable surface pili were markedly decreased in fimV pilT retraction-deficient mutants compared with levels in the pilT control, demonstrating that FimV acts at the level of pilus assembly. Levels of inner membrane assembly subcomplex proteins PilM/N/O/P were decreased in fimV mutants, but supplementation of these components in trans did not restore pilus assembly or motility. Loss of FimV dramatically reduced the levels of the PilQ secretin multimer through which pili exit the cell, in part due to decreased levels of PilQ monomers, while PilF pilotin levels were unchanged. Expression of pilQ in trans in the wild type or fimV mutants increased total PilQ monomer levels but did not alter secretin multimer levels or motility. PG pulldown assays showed that the N terminus of FimV bound PG in a LysM motif-dependent manner, and a mutant with an in-frame chromosomal deletion of the LysM motif had reduced motility, secretin levels, and surface piliation. Together, our data show that FimV's role in pilus assembly is to promote secretin formation and that this function depends upon its PG-binding domain.  相似文献   

17.
18.
Multiple secretion pathways are known for export of protein(s) forming the S-layer in bacteria. The unicellular model cyanobacterium Synechocystis sp. strain PCC 6803 (hereafter S. 6803) also possesses a well-defined S-layer composed of Sll1951 protein. However, the mechanism of its secretion is not completely understood. In the present study, the putative T1SS (Type I secretion system) components, Sll1180 and Sll1181 [inner membrane ABC transporter and membrane fusion protein (MFP), respectively] were characterized for their role in Sll1951 secretion. The corresponding ORFs i.e. sll1180 and sll1181 were inactivated by insertion of a spectinomycin resistance gene. The viability of the homozygous mutants of both the genes indicated dispensability of the corresponding proteins under the experimental conditions. Interestingly, the culture supernatants of the mutants i.e. Δsll1180 and Δsll1181, lacked Sll1951 as observed on SDS-PAGE and confirmed by mass spectrometry. Immunofluorescence delineated a distinct outer ring of Sll1951 in S. 6803 cells only that was further iterated by transmission and scanning electron microscopy. The loss of S-layer imparted an aggregative phenotype to both the mutants. Surprisingly, Δsll1181 cells showed increased sensitivity to different antibiotics indicating a role in multidrug efflux. This is the first report establishing Sl1180 and Sll1181 proteins as partners of the previously characterized Slr1270, for Sll1951 secretion and thus S-layer biogenesis in S. 6803. Sll1181 (in conjunction with Slr1270) also acts as MFP in multidrug efflux along with a yet uncharacterized inner membrane protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号