首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatase holoenzyme inhibitor (PHI)-1 is one of the newest members of the family of protein phosphatase inhibitor proteins. In isolated enzyme systems, several kinases, including PKC and rho kinase (ROCK), have been shown to phosphorylate PHI-1. However, it is largely unknown whether PHI-1 is phosphorylated in response to agonist stimulation in intact cells. We investigated this question in primary cultured rat aortic vascular smooth muscle cells (VSMCs). Using two-dimensional polyacrylamide gel electrophoresis and immunoblot, we found that there are two major PHI-1 spots under resting conditions: a minor spot with an acidic isoelectric point (pI) and a major spot with a more alkaline pI. Interestingly, U-46619, a G protein-coupled receptor agonist, caused a significant increase in the acidic spot, suggesting that it may represent a phosphorylated form of PHI-1. This was confirmed by phosphatase treatment and by a specific phospho-PHI-1 antibody. Furthermore, we found that angiotensin II, thrombin, and U-46619 increased phosphorylated PHI-1 from 9% of total PHI-1 in resting cells to 18%, 18%, and 30%, respectively. We also found that inhibition of ROCK by Y-27632 or H-1152 selectively diminished U-46619-induced CPI-17 phosphorylation, whereas it did not affect PHI-1 phosphorylation. Activation of ROCK by expressing V14RhoA selectively induced CPI-17 phosphorylation without affecting PHI-1 phosphorylation. In contrast, inhibition of PKC by GF-109203X or by PKC downregulation selectively diminished U-46619-induced PHI-1 phosphorylation without significantly affecting U-46619-induced CPI-17 phosphorylation. Activating PKC by PMA induced PHI-1 phosphorylation. Together, our results show for the first time that agonist induces PHI-1 phosphorylation in VSMCs and divergent kinase signaling couples agonist stimulation to PHI-1 and CPI-17 phosphorylation. signal transduction; myosin phosphatase holoenzyme inhibitor 1; protein kinase C  相似文献   

2.
3.
Phosphorylation of CPI-17 and PHI-1 by the MYPT1-associated kinase (M110 kinase) was investigated. M110 kinase is a recently identified serine/threonine kinase with a catalytic domain that is homologous to that of ZIP kinase (ZIPK. GST-rN-ZIPK, a constitutively active GST fusion fragment, phosphorylates CPI-17 (but not PHI-1) to a stoichiometry of 1.7 mol/mol. Phosphoamino acid analysis revealed phosphorylation of both Ser and Thr residues. Phosphorylation sites in CPI-17 were identified as Thr 38 and Ser 12 using Edman sequencing with (32)P release and a point mutant of Thr 38.  相似文献   

4.
CPI-17 is a phosphorylation-dependent inhibitory protein for smooth muscle myosin phosphate. Phosphorylation at Thr(38), in vitro, by protein kinase C or Rho-kinase enhances the inhibitory potency toward myosin phosphatase. Phosphorylation of CPI-17 by protein kinase N (PKN), a fatty acid- and Rho-activated serine/threonine kinase, and its effect on smooth muscle myosin phosphatase activity were investigated. CPI-17 was phosphorylated by GST-PKN-CAT, a constitutively active GST-fusion fragment of PKN, to 1.46 mol of P/mol of CPI-17, in vitro. The K(m) value of CPI-17 for PKN was 0.96 microM. Phosphorylation of PKN dramatically increased the inhibitory effect of CPI-17 on myosin phosphatase activity. The major and inhibitory phosphorylation site was identified as Thr(38) using a point mutant of CPI-17 and a phosphorylation-state specific antibody. Thus, CPI-17 is a substrate of PKN and might be involved in the Ca(2+) sensitization of smooth muscle contraction as a downstream effector of Rho and/or arachidonic acid.  相似文献   

5.
Myosin light chain phosphatase (MLCP) plays a pivotal role in smooth muscle contraction by regulating Ca(2+) sensitivity of myosin light chain phosphorylation. A smooth muscle phosphoprotein called CPI-17 specifically and potently inhibits MLCP in vitro and in situ and is activated when phosphorylated at Thr-38, which increases its inhibitory potency 1000-fold. We produced a phosphospecific antibody for this site in CPI-17 and used it to study in situ phosphorylation of endogenous CPI-17 in arterial smooth muscle in response to agonist stimulation. In the intact femoral artery, CPI-17 phosphorylation was negligible at the resting state and was not increased during contraction induced by K(+) depolarization. The Ca(2+)-sensitizing agonists histamine and phenylephrine induced nearly equivalent contractions, but histamine generated significantly higher levels of CPI-17 phosphorylation. In alpha-toxin-permeabilized strips at pCa 6.7, contractile force and CPI-17 phosphorylation were proportional in response to histamine, guanosine 5'-O-(gamma-thiotriphosphate), and histamine plus guanyl-5'-yl thiophosphate, implying that histamine increased CPI-17 phosphorylation through activation of G proteins. Inhibitors of Rho-kinase (Y27632) and protein kinase C (PKC; GF109203X) reduced contraction and CPI-17 phosphorylation in parallel, suggesting that CPI-17 functions downstream of Rho kinases and PKC. The results show that agonists such as histamine signal through phosphorylation of CPI-17 to produce Ca(2+) sensitization of smooth muscle contraction.  相似文献   

6.
Phosphorylation of CPI-17 by Rho-associated kinase (Rho-kinase) and its effect on myosin phosphatase (MP) activity were investigated. CPI-17 was phosphorylated by Rho-kinase to 0.92 mol of P/mol of CPI-17 in vitro. The inhibitory phosphorylation site was Thr(38) (as reported previously) and was identified using a point mutant of CPI-17 and a phosphorylation state-specific antibody. Phosphorylation by Rho-kinase dramatically increased the inhibitory effect of CPI-17 on MP activity. Thus, CPI-17 as a substrate of Rho-kinase could be involved in the Ca(2+) sensitization of smooth muscle contraction as a downstream effector of Rho-kinase.  相似文献   

7.
Phosphorylation of endogenous inhibitor proteins for type-1 Ser/Thr phosphatase (PP1) provides a mechanism for reciprocal coordination of kinase and phosphatase activities. A myosin phosphatase inhibitor protein CPI-17 is phosphorylated at Thr38 through G-protein-mediated signals, resulting in a >1000-fold increase in inhibitory potency. We show here the solution NMR structure of phospho-T38-CPI-17 with rmsd of 0.36 +/- 0.06 A for the backbone secondary structure, which reveals how phosphorylation triggers a conformational change and exposes an inhibitory surface. This active conformation is stabilized by the formation of a hydrophobic core of intercalated side chains, which is not formed in a phospho-mimetic D38 form of CPI-17. Thus, the profound increase in potency of CPI-17 arises from phosphorylation, conformational change, and hydrophobic stabilization of a rigid structure that poses the phosphorylated residue on the protein surface and restricts its hydrolysis by myosin phosphatase. Our results provide structural insights into transduction of kinase signals by PP1 inhibitor proteins.  相似文献   

8.
In smooth muscle, a Rho-regulated systemof myosin phosphatase exists; however, it has yet to be establishedwhether Rho kinase, one of the downstream effectors of Rho, mediatesthe regulation of myosin phosphatase activity in vivo. In the presentstudy, we demonstrate in permeabilized vascular smooth muscle cells(SMCs) that the vasodilator 1-(5-isoquinolinesulfonyl)-homopiperazine (HA-1077), which we show to be a potent inhibitor of Rho kinase, dosedependently inhibits Rho-mediated enhancement ofCa2+-induced 20-kDa myosin lightchain (MLC20) phosphorylationdue to abrogating Rho-mediated inhibition ofMLC20 dephosphorylation. By animmune complex phosphatase assay, we found that guanosine 5'-O-(3-thiotriphosphate)(GTPS) stimulation of permeabilized SMCs caused a decrease in myosinphosphatase activity with an increase in the extent of phosphorylationof the 130-kDa myosin-binding regulatory subunit (MBS) of myosinphosphatase in a Rho-dependent manner. HA-1077 abolished both of theRho-mediated events. Moreover, we observed that the pleckstrinhomology/cystein-rich domain protein of Rho kinase, a dominant negativeinhibitor of Rho kinase, inhibited GTPS-induced phosphorylation ofMBS. These results provide direct in vivo evidence that Rho kinasemediates inhibition of myosin phosphatase activity with resultantenhancement of MLC20phosphorylation in smooth muscle and reveal the usefulness of HA-1077as a Rho kinase inhibitor.

  相似文献   

9.
It is clear from several studies that myosin phosphatase (MP) can be inhibited via a pathway that involves RhoA. However, the mechanism of inhibition is not established. These studies were carried out to test the hypothesis that Rho-kinase (Rho-associated kinase) via phosphorylation of the myosin phosphatase target subunit 1 (MYPT1) inhibited MP activity and to identify relevant sites of phosphorylation. Phosphorylation by Rho-kinase inhibited MP activity and this reflected a decrease in V(max). Activity of MP with different substrates also was inhibited by phosphorylation. Two major sites of phosphorylation on MYPT1 were Thr(695) and Thr(850). Various point mutations were designed for these phosphorylation sites. Following thiophosphorylation by Rho-kinase and assays of phosphatase activity it was determined that Thr(695) was responsible for inhibition. A site- and phosphorylation-specific antibody was developed for the sequence flanking Thr(695) and this recognized only phosphorylated Thr(695) in both native and recombinant MYPT1. Using this antibody it was shown that stimulation of serum-starved Swiss 3T3 cells by lysophosphatidic acid, thought to activate RhoA pathways, induced an increase in Thr(695) phosphorylation on MYPT1 and this effect was blocked by a Rho-kinase inhibitor, Y-27632. In summary, these results offer strong support for a physiological role of Rho-kinase in regulation of MP activity.  相似文献   

10.
Vascular smooth muscle cell contraction and relaxation are directly related to the phosphorylation state of the regulatory myosin light chain. Myosin light chains are dephosphorylated by myosin phosphatase, leading to vascular smooth muscle relaxation. Myosin phosphatase is localized not only at actin-myosin stress fibers where it dephosphorylates myosin light chains, but also in the cytoplasm and at the cell membrane. The mechanisms by which myosin phosphatase is targeted to these loci are incompletely understood. We recently identified myosin phosphatase-Rho interacting protein as a member of the myosin phosphatase complex that directly binds both the myosin binding subunit of myosin phosphatase and RhoA and is localized to actin-myosin stress fibers. We hypothesized that myosin phosphatase-Rho interacting protein targets myosin phosphatase to the contractile apparatus to dephosphorylate myosin light chains. We used RNA interference to silence the expression of myosin phosphatase-Rho interacting protein in human vascular smooth muscle cells. Myosin phosphatase-Rho interacting protein silencing reduced the localization of the myosin binding subunit to stress fibers. This reduction in stress fiber myosin phosphatase-Rho interacting protein and myosin binding subunit increased basal and lysophosphatidic acid-stimulated myosin light chain phosphorylation. Neither cellular myosin phosphatase, myosin light chain kinase, nor RhoA activities were changed by myosin phosphatase-Rho interacting protein silencing. Furthermore, myosin phosphatase-Rho interacting protein silencing resulted in marked phenotypic changes in vascular smooth muscle cells, including increased numbers of stress fibers, increased cell area, and reduced stress fiber inhibition in response to a Rho-kinase inhibitor. These data support the importance of myosin phosphatase-Rho interacting protein-dependent targeting of myosin phosphatase to stress fibers for regulating myosin light chain phosphorylation state and morphology in human vascular smooth muscle cells.  相似文献   

11.
CPI-17 is a unique phosphoprotein that specifically inhibits myosin light chain phosphatase in smooth muscle and plays an essential role in agonist-induced contraction. To elucidate the in situ mechanism for G protein-mediated Ca2+-sensitization of CPI-17 phosphorylation, α-toxin-permeabilized arterial smooth muscle strips were used to monitor both force development and CPI-17 phosphorylation in response to GTPγS with varying Ca2+ concentrations. CPI-17 phosphorylation increased at unphysiologically high Ca2+ levels of pCa ? 6. GTPγS markedly enhanced the Ca2+ sensitivity of CPI-17 steady-state phosphorylation but had no enhancing effect under Ca2+-free conditions, while the potent PKC activator PDBu increased CPI-17 phosphorylation regardless of Ca2+ concentration. CPI-17 phosphorylation induced by pCa 4.5 alone was markedly inhibited by the presence of PKC inhibitor but not ROCK inhibitor. In the presence of calyculin A, a potent PP1/PP2A phosphatase inhibitor, CPI-17 phosphorylation increased with time even under Ca2+-free conditions. Furthermore, as Ca2+ concentration increased, so did CPI-17 phosphorylation rate. GTPγS markedly enhanced the rate of phosphorylation of CPI-17 at a given Ca2+. In the absence of calyculin A, either steady-state phosphorylation of CPI-17 under Ca2+-free conditions in the presence of GTPγS or at pCa 6.7 in the absence of GTPγS was negligible, suggesting a high intrinsic CPI-17 phosphatase activity. In conclusion, cooperative increases in Ca2+ and G protein activation are required for a significant activation of total kinases that phosphorylate CPI-17, which together overcome CPI-17 phosphatase activity and effectively increase the Ca2+ sensitivity of CPI-17 phosphorylation and smooth muscle contraction.  相似文献   

12.
Eto M  Bock R  Brautigan DL  Linden DJ 《Neuron》2002,36(6):1145-1158
Cerebellar LTD requires brief activation of PKC and is expressed as a functional downregulation of AMPA receptors. Modulation of vascular smooth-muscle contraction by G protein-coupled receptors (called Ca(2+) sensitization) also involves PKC phosphorylation and activation of a specific inhibitor of myosin/moesin phosphatase (MMP). This inhibitor, called CPI-17, is also expressed in brain. Here, we tested the hypothesis that LTD, like Ca(2+) sensitization, employs a PKC/CPI-17 cascade. Introduction of activated recombinant CPI-17 into cells produced a use-dependent attenuation of glutamate-evoked responses and occluded subsequent LTD. Moreover, the requirement for endogenous CPI-17 in LTD was demonstrated with neutralizing antibodies plus gene silencing by siRNA. These interventions had no effect on basal synaptic strength but blocked LTD induction. Thus, a biochemical circuit that involves PKC-mediated activation of CPI-17 modulates the distinct physiological processes of vascular contractility and cerebellar LTD.  相似文献   

13.
Recent evidence suggests that the agonist-induced formation of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) via PI and PIP kinases may play an important role in transmembrane signalling. In the present work, the effect of genistein, a specific inhibitor of protein-tyrosine kinase, on phosphoinositide phosphorylation was studied in human platelets stimulated with the endoperoxide analogue, U46619. At 100 microM concentration, genistein, but not the related compounds, flavone and biochanin A, which possess only weak anti-protein-tyrosine kinase activity, significantly inhibited the U46619-induced accumulation of [3H]PIP (by 71%) and [3H]PIP2. These data suggest that phosphoinositide phosphorylation may be regulated, in part, by tyrosine phosphorylation in U46619-stimulated platelets.  相似文献   

14.
A translocation of protein kinase C (PKC) from cytosol to plasma membrane has been reported as an association with agonist-induced Ca2+ sensitization in smooth muscle contraction. Therefore, it is possible that a downstream target of PKC, CPI-17 [PKC-potentiated inhibitory protein for heterotrimeric myosin light chain (MLC) phosphatase of 17 kDa], might also be translocated to membrane when activated. To confirm this hypothesis, cytosolic and membrane CPI-17 was measured in acetylcholine (ACh)- and high-K+ depolarization-stimulated bronchial smooth muscle of rats. An active form of CPI-17, i.e., Thr38-phosphorylated CPI-17, was also measured in cytosolic and membrane fractions. Immunoblot analyses demonstrated a translocation of CPI-17 from cytosolic to membrane fraction by ACh, but not high-K+ depolarization, stimulation in time- and concentration-dependent manners. Interestingly, phosphorylated CPI-17 was detected only in membrane fractions in the ACh-stimulated tissues. However, in the high-K+ depolarization-stimulated tissues, phosphorylated CPI-17 was not detected both in membrane and cytosolic fraction. To estimate downstream of activated CPI-17, immunoblotting for phosphorylated MLC was performed in ACh- or high-K+ depolarization-stimulated tissues. ACh- and high-K+ depolarization-induced phosphorylation of MLC was observed in its contraction-dependent manner. In conclusion, we, for the first time, suggested that CPI-17 is translocated and phosphorylated by ACh, but not high-K+ depolarization, in rat bronchial smooth muscle. ACh-induced translocation and phosphorylation of CPI-17 might be caused via the activation of muscarinic receptor.  相似文献   

15.
It has been demonstrated that CPI-17 provokes an inhibition of myosin light chain phosphatase to increase myosin light chain phosphorylaton and Ca(2+) sensitivity during contraction of vascular smooth muscle. However, expression and agonist-mediated regulation of CPI-17 in bronchial smooth muscle have not been documented. Thus, expression and phosphorylation of CPI-17 mediated by PKC and ROCK were investigated using rat bronchial preparations. Acetylcholine (ACh)-induced contraction and Ca(2+) sensitization were both attenuated by 10(-6) mol Y-27632 /L, a ROCK inhibitor, 10(-6) mol calphostin C/L, a PKC inhibitor, and their combination. A PKC activator, PDBu, induced a Ca(2+) sensitization in alpha-toxin-permeabilized bronchial smooth muscle. In this case, the Ca(2+) sensitizing effect was significantly inhibited by caphostin C but not by Y-27632. An immunoblot study demonstrated CPI-17 expression in the rat bronchial smooth muscle. Acetylcholine induced a phosphorylation of CPI-17 in a concentration-dependent manner, which was significantly inhibited by Y-27632 and calphostin C. In conclusion, these data suggest that both PKC and ROCK are involved in force development, Ca(2+) sensitization, and CPI-17 phosphorylation induced by ACh stimulation in rat bronchial smooth muscle. As such, RhoA/ROCK, PKC/CPI-17, and RhoA/ROCK/CPI pathways may play important roles in the ACh-induced Ca(2+) sensitization of bronchial smooth muscle contraction.  相似文献   

16.
CPI-17 is a protein phosphatase 1 (PP1) inhibitor that has been shown to act on the myosin light chain phosphatase. CPI-17 is phosphorylated on Thr-38 in vivo, thus enhancing its ability to inhibit PP1. Thr-38 has been shown to be the target of several protein kinases in vitro. Originally, the expression of CPI-17 was proposed to be smooth muscle specific. However, it has recently been found in platelets and we show in this report that it is endogenously phosphorylated in brain on Ser-128 in a domain unique to CPI-17. Ser-128 is within a consensus phosphorylation site for protein kinase A (PKA) and calcium calmodulin kinase II. However, these two kinases do not phosphorylate Ser-128 in vitro but phosphorylate Ser-130 and Thr-38, respectively. The kinase responsible for Ser-128 phosphorylation remains to be identified. CPI-17 has strong sequence similarity with PHI-1 (which is also a phosphatase inhibitor) and LimK-2 kinase. The novel in vivo and in vitro phosphorylation sites (serines 128 and 130) are in a region/domain unique to CPI-17, suggesting a specific interaction domain that is regulated by phosphorylation.  相似文献   

17.
CPI-17 is a phosphorylation-dependent inhibitor of myosin phosphatase. cDNA clones encoding CPI-17 were isolated from a human aorta library. Overlapping clones indicated two isoforms: CPI-17alpha was 147 residues and mass of 16.7 kDa; CPI-17beta (120 residues, mass 13.5 kDa) resulted from a deletion in the alpha-isoform of 27 residues, sequence 68-94. N-terminal 67 residues of all CPI-17 isoforms (human, porcine, rat and mouse) were highly conserved (for the human and porcine isoforms the identity was 91%). The presence of the two human isoforms was detected from cDNA sequences amplified by RT-PCR and by Western blots on human aorta. The cloned human CPI-17 gene indicated 4 coding exons and CPI-17beta was an alternative splice variant due to deletion of the second exon. FISH analysis located the human CPI-17 gene on chromosome 19q13.1.  相似文献   

18.
19.
Phosphorylation of myosin regulatory light chain (RLC) triggers contraction in smooth muscle myocytes. Dephosphorylation of phosphorylated RLC (pRLC) is mediated by myosin RLC phosphatase (MLCP), which is negatively regulated by rho‐associated kinase (ROK). We have compared basal and stimulated concentrations of pRLC in myocytes from human coronary artery (hVM), which has a tonic contractile pattern to myocytes from human uterus (hUM), which has a phasic contractile pattern. Our studies reveal fundamental differences between hVM and hUM regarding the mechanisms regulating phosphorylation RLC. Whereas hVM responded to stimulation by phosphorylation of RLC at S19, hUM responded by forming diphosphorylated RLC (at T18 and S19; ppRLC), which, compared to pRLC, causes two to threefold greater activation of myosin ATPase that provides energy to power the contraction. Importantly, the conversion of pRLC to ppRLC is mediated by ROK. In hUM, MLCP has high activity for ppRLC and this is inhibited by ROK through phosphorylation of the substrate targeting subunit (MYPT1) at T853. Inhibitors of ROK significantly reduce contractility in both hVM and hUM. We demonstrated that inhibition of ppRLC in phasic myocytes (hUM) is 100‐fold more sensitive to ROK inhibitors than is pRLC in tonic myocytes (hVM). We speculate that these differences in phosphorylation of RLC might reflect evolution of different contractile patterns to perform distinct physiological functions. Furthermore, our data suggest that low concentrations of ROK inhibitors might inhibit uterine contractions with minimal effects on vascular tone, thus posing a novel strategy for prevention or treatment of conditions such as preterm birth.  相似文献   

20.
Myosin was prepared from human umbilical artery and some of its properties were studied. The yield of myosin after ultracentrifugation was 4.3-13.6 mg/gr wet weight of tissue (mean: 8.6 mg/gr). A considerable amount of phosphate bound to the myosin was found in all preparations. Phosphate content of umbilical arterial myosin was higher than what had been found in our earlier works in skeletal muscle myosin. Phosphate content of umbilical arterial myosin also could be further increased by incubation in ATP containing media. While the rate of phosphorylation of human umbilical arterial myosin was slower than that of skeletal muscle myosin, the saturated phosphate levels reached with 0.5 mM ATP concentration were higher for vascular myosin. The slower phosphate uptake rate of vascular myosin may be related to the slower contraction rate of this muscle type. After alkaline hydrolysis of lipid free myosin, 7 or 8 peaks of N-phosphoryl amino acids and phosphorylated amino acid derivates could be separated by ion exchange chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号