首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在建立稳定的红藻氨酸(KA)诱发小鼠惊厥模型的基础上,用放射配体受体结合分析法,研究孕烯醇酮(Pe)及其拮抗剂孕烯醇酮硫酸盐(Pes)对小鼠下丘脑、大脑皮层、海马和小脑四个脑区γ-氨基丁酸A(GABAA)受体的调制作用.结果显示,Pe能增加某些脑区3H-GABA与GABAA受体的结合量,下丘脑、海马和小脑差异显著(P<0.05或P<0.001),而大脑皮层差异不显著(P>0.05).Pe对GABAA受体的调制作用能被印防己毒素(Pic)阻断,对KA的致惊效应具有抑制作用.Pes 能显著降低各脑区GABAA受体的结合量(P<0.01或P<0.001),对惊厥有促进作用.实验结果提示:孕烯醇酮具有明显的镇静和抗惊厥效应,并且可能是通过GABAA受体介导的.  相似文献   

2.
Heme oxygenase-1 (HO-1) is induced under various stresses. Here we report the induction and localization of HO-1 in the rat brain by intraperitoneal administration of kainic acid (KA). Both mRNA and protein of HO-1 were markedly induced by KA treatment, and each maximal induction was observed 24 h after KA administration. In situ hybridization analysis showed that HO-1 mRNA appeared predominantly in glial cells, and confined neurons were positive in the cerebral cortex, basal ganglia, and hippocampal pyramidal cell layer. Immunohistochemical analysis showed that the positive cells in the cerebral cortex and hippocampus were mainly astrocytes and microglia, whereas neurons in the basal ganglia showed intense immunoreactivity. We also demonstrate the dissociation between HO-1 mRNA and protein level in the hippocampal pyramidal neurons, which is known to be vulnerable against excitotoxicity, and discuss the correlation between this dissociation and the vulnerability of hippocampal pyramidal neurons.  相似文献   

3.
We examined the kainic acid-induced changes of mRNA levels of several cytokines such as IL-1 beta, IL-6, TNF alpha and LIF in the rat brain regions using semiquantitative RT-PCR method. IL-1 beta mRNA was markedly increased in the cerebral cortex (CC), thalamus (THL) and hypothalamus (HT) 2 h after the injection of kainic acid in a convulsive dose (12 mg/kg i.p.), and tended to decrease 4 h after the injection. IL-6 mRNA was weakly induced in the hippocampus (HPP) 2 h after the injection of kainic acid and was markedly increased in the CC, HPP, THL, and HT at 4 h. The level of TNF alpha mRNA was highly elevated in the CC, HPP, striatum (STR), THL and HT at 2 and 4 h after the injection. LIF mRNA apparently expressed in the CC and HPP of control rats and was increased in the CC, HPP and HT by the treatment with kainic acid. These results indicate that mRNAs of several cytokines are increased in various brain regions with different time-courses by kainic acid.  相似文献   

4.
The effect of kainic acid on extracellular [K+], [Ca2+], and [Na+] in the rat piriform cortex and hippocampus was studied by means of intracranial microdialysis. Either a dialysis fiber loop or horizontal Vita fiber were stereotaxically implanted within the piriform cortex or hippocampus, respectively. About 24 h later, fibers were perfused (1 ml/min) with Krebs-Ringer bicarbonate solution. Effluent samples were collected before (four at 30 min intervals), and after (six at 30 min intervals) administration of kainic acid (16 mg/kg, i.p.) or kainic acid vehicle. Kainic acid induced sequential signs of lethargy, staring, "wet-dog shakes," forepaw clonus, and tonic-clonic convulsions. In these awake free-moving rats, kainic acid induced a rapid and prolonged increase in extracellular [K+] and an apparent, but not statistically significant, decrease in extracellular [Ca2+] within the hippocampus. In the piriform cortex, kainic acid induced increases in extracellular [K+] and [Na+], which were associated with early pre-convulsive signs. In contrast to the pronounced ion changes commonly seen when the brain is activated by factors such as local application of excitatory substances or when the brain is made ischemic or hypoxic, extracellular ion concentrations are relatively well maintained during parenteral kainic acid-induced seizures.  相似文献   

5.
Membrane depolarization of neurons is thought to lead to changes in gene expression that modulate neuronal plasticity. We used representational difference analysis to identify a group of cDNAs that are induced by membrane depolarization or by forskolin, but not by neurotrophins or growth factors, in PC12 pheochromocytoma cells. One of these genes, SIK (salt-inducible kinase), is a member of the sucrose-nonfermenting 1 protein kinase/AMP-activated protein kinase protein kinase family that was also recently identified from the adrenal gland of rats treated with high-salt diets. SIK mRNA is induced up to eightfold in specific regions of the hippocampus and cortex in rats, following systemic kainic acid administration and seizure induction.  相似文献   

6.
The expression of interleukin-1 beta (IL-1 beta) mRNA in the cerebral cortex, hippocampus, striatum, and thalamus of rats was studied after transient forebrain ischemia. IL-1 beta mRNA was not detected in all these regions of sham-operated control rats. IL-1 beta mRNA was induced after transient forebrain ischemia and reached a detectable level in all regions examined 15 min after the start of recirculation. The induction of IL-1 beta mRNA had a few peaks, that is, peaks were observed at 30 and 240 min in the four regions examined, and another peak was observed at 90 min in the striatum. One day after the start of recirculation, IL-1 beta mRNA levels were markedly decreased, but even 7 days after that, IL-1 beta mRNA was found at very low levels in all regions examined. The amounts of c-fos and beta-actin mRNAs on the same blots were also examined. The induction of c-fos mRNA was transient and had only one peak in all regions examined, whereas the levels of beta-actin mRNA in these regions were fairly constant throughout the recirculation period. Thus, we provide the first evidence for a characteristic expression of IL-1 beta mRNA in several brain regions after transient forebrain ischemia.  相似文献   

7.
Recent studies have shown marked increases in brain content of neuropeptide Y (NPY) after seizures induced by intraperitoneal injection of kainic acid and after pentylenetetrazole kindling in the rat. We have now investigated possible changes in the rate of biosynthesis of NPY after kainic acid treatment, by using pulse-labeling of the peptide and by determining prepro-NPY mRNA concentrations. For pulse labeling experiments, [3H]tyrosine was injected into the frontal cortex, and the incorporation of the amino acid into NPY was determined after purifying the peptide by gel filtration chromatography, antibody affinity chromatography, and reversed-phase HPLC. At 2 and 30 days after kainic acid treatment, the rate of tyrosine incorporation was enhanced by approximately 380% in the cortex. In addition, concentrations of pre-pro-NPY mRNA were determined in four different brain areas by hybridization of Northern blots with a complementary 32P-labeled RNA probe 2, 10, 30, and 60 days after kainic acid treatment. Marked increases were observed in the frontal cortex (by up to 350% of controls), in the dorsal hippocampus (by 750%), and in the amygdala/pyriform cortex (by 280%) at all intervals investigated. In the striatum only a small, transient increase was observed. The data demonstrate increased expression of prepro-NPY mRNA and an enhanced rate of in vivo synthesis of NPY as a result of seizures induced by the neurotoxin kainic acid.  相似文献   

8.
Cognitive processes and functional state of mitochondria in brain structures of Wistar rats were studied after intrahippocampal injection of kainic acid, an agonist of glutamate receptors. A single administration of 0.25 μg kainic acid into the dorsal part of the left and right hippocampi affected task retrieval and decreased inhibition of unrewarded responses. The injection of 0.75 μg kainic acid induced recurrent seizures and completely disorganized animal behavior. The functional state of mitochondria, as an important marker of excitotoxicity, was studied after intrahippocampal injections of kainic acid in the same doses. Kainic acid at 0.25 μg proved to activate the oxidative phosphorylation in hippocampal mitochondria. A higher (epileptogenic) dose of kainic acid inhibited mitochondrial respiration in the frontal cortex, but had an insignificant effect on mitochondrial respiration in the hippocampus. The disturbed interaction between the hippocampal system and frontal cortex after kainic acid administration can be the main factor of the revealed cognitive dysfunctions.  相似文献   

9.
Nitric oxide (NO) is a free radical with multiple functions in the nervous system. NO plays an important role in the mechanisms of neurodegenerative diseases including Alzheimer's disease. The main source of NO in the brain is an enzymatic activity of nitric oxide synthase (NOS). The aim of the present study was to analyze the expression and activity of both neuronal (nNOS) and inducible (iNOS) isoenzymes in the cerebral cortex and hippocampus of rats after intracerebroventricular administration of amyloid-beta (A beta) peptide fragment A beta(25-35). NADPHd histochemistry as well as immunohistochemistry were also used to investigate nNOS and iNOS expression in rat brain. The data presented here show that A beta(25-35) did not influence levels of nNOS or iNOS mRNA or protein expression in both structures studied. A beta(25-35) activated nNOS in the cerebral cortex and hippocampus without effect on iNOS activity. A beta(25-35) decreased the number of NADPHd-expressing neurons in the neocortex, but it did not significantly influence the number NADPHd-positive cells in the hippocampus. The peptide had no effect on the number of nNOS containing cells. We hypothesize that increased synthesis of NO induced by A beta(25-35) is related to qualitative alterations of nNOS molecule, but not to changes in NOS protein expression.  相似文献   

10.
Several studies have suggested that the concentration of thyrotropin releasing hormone (TRH) in the central nervous system (CNS) is influenced by the level of CNS activation. Hibernation in the ground squirrel and estivation in the lungfish result in region-specific decreases in TRH concentrations. Repeated electroconvulsive shock (ECS) and amygdaloid kindling have been shown to result in elevations of TRH in limbic brain regions. In the present study, limbic seizures induced by systemic administration of kainic acid resulted in substantial increases in the TRH content of posterior cortex and of dorsal and ventral hippocampus, and in moderate elevations in anterior cortex, amygdala/piriform cortex and corpus striatum. Maximal elevations in TRH were observed 2-4 days after kainic acid administration, and by 14 days TRH levels were similar to control values, with the exception of the dorsal hippocampus, which exhibited more prolonged elevations in TRH levels. Prior exposure to limbic seizure activity attenuated the magnitude of TRH elevation in response to a second administration of kainic acid in the posterior cortex but in no other region. These results indicate that seizure-related processes or events influence TRH systems in the CNS. Neuronal populations involved in limbic seizure induced damage may be involved in the modulation of posterior cortical TRH levels.  相似文献   

11.
Cell specific markers were quantified in the hippocampus, the amygdala/pyriform cortex, the frontal cerebral cortex and the striatum of the rat brain after systemic administration of kainic acid. Neuron specific enolase (NSE) reflects loss of neurons, glial fibrillary acidic protein (GFAP) reflects reactive gliosis, and brain levels of serum proteins measures blood-brain-barrier permeability. While the concentration of NSE remained unaffected in the frontal cerebral cortex and the striatum, their GFAP content increased during the first three days. In the hippocampus and amygdala, NSE levels decreased significantly. GFAP levels in the hippocampus were unaffected after one day and decreased in the amygdala/pyriform cortex. After that, GFAP increased strikingly until day 9 or, in the case of amygdala/pyriform cortex, even longer. This biphasic time course for GFAP was accompanied by a decrease of S-100 during days 1-9 followed by a significant increase at day 27 above the initial level. The regional differences in GFAP and S-100 could result from the degree of neuronal degeneration, the astrocytic receptor set-up and/or effects on the blood-brain barrier.  相似文献   

12.
We investigated the Levetiracetam (LVT) ability to protect the brain against kainic acid (KA) induced neurotoxicity. Brain injury was induced by intraperitoneal administration of KA (10 mg/kg). Sham brain injury rats were used as controls. Animals were randomized to receive either LVT (50 mg/kg) or its vehicle (1 ml/kg) 30 min. before KA administration. Animals were sacrificed 6 hours after KA injection to measure brain malonildialdehyde (MDA), glutathione levels (GSH) and the mRNA for interleukin-1beta (IL-1beta) in the cortex and in the diencephalon. Behavioral changes were also monitored. Intraperitoneal administration of LVT decreased significantly MDA in the cortex (KA + vehicle = 0.25 +/- 0.03 nmol/mg protein; KA + LVT = 0.13 +/- 0.01 nmol/mg protein; P < 0.005), and in the diencephalons (KA + vehicle = 1,01 +/- 0.2 nmol/mg protein; KA + LVT = 0,33 +/- 0,08 nmol/mg protein; P < 0.005), prevented the brain loss of GSH in both cortex (KA + vehicle = 5 +/- 1 micromol/g protein; KA + LVT = 15 +/- 2 micromol/g protein; P < 0.005) and diencephalons (KA + vehicle = 9 +/- 0.8 micromol/g protein; KA + LVT = 13 +/- 0.3 micromol/g protein; P < 0.05), reduced brain IL-1beta mRNA and markedly controlled seizures. Histological analysis showed a reduction of cell damage in LVT treated samples. The present data indicate that LVT displays neuro-protective effects against KA induced brain toxicity and suggest that these effects are mediated, at least in part, by inhibition of lipid peroxidation.  相似文献   

13.
Abstract: Glucocorticoids have been shown to exacerbate the damaging effects of a variety of neurotoxic insults in the hippocampus and other brain areas. Evidence suggests that the endangering effects of glucocorticoids may be due to augmenting the cascade of events, such as elevations in intracellular calcium levels, because of excitatory amino acid (EAA) receptor stimulation. A potential mechanism responsible for EAA-induced neuronal damage is activation of calcium-sensitive proteases, such as calpain, which then proteolytically degrade cytoskeleton structural proteins, such as spectrin. The present study was designed to determine if glucocorticoids can regulate the spectrin proteolysis produced by the EAA agonist, kainic acid. Rats were adrenalectomized (ADX) or sham operated and 7 days later injected with kainic acid (10 mg/kg). Twenty-four hours later rats were killed and tissues obtained for western blot analyses of the intact spectrin molecule and the proteolytically derived breakdown products. Kainic acid produced an approximate sevenfold increase in the 145–155-kDa spectrin breakdown products in the hippocampus relative to ADX or sham rats injected with vehicle. ADX attenuated the kainic acid-induced increase in breakdown products by 43%. In a similar way, kainic acid produced a large 10-fold increase in spectrin breakdown products in the frontal cortex, which was also significantly attenuated (?80%) by ADX. Induction of heat shock protein 70 (hsp70) by neurotoxic insults has been suggested to be a sensitive indicator of cellular stress in neurons. Kainic acid induced large amounts of hsp70 in both hippocampus and frontal cortex of sham-operated rats that was markedly attenuated (85–95%) by ADX. There was a strong positive correlation between the amount of spectrin proteolysis and the degree of hsp70 induction in both the hippocampus and frontal cortex. In contrast, kainic acid did not significantly produce spectrin proteolysis and induced only a very modest and inconsistent increase of hsp70 in the hypothalamus. This is consistent with the observation that the hypothalamus is relatively insensitive to the neurotoxic effects of systemically administered kainic acid. The dose of kainic acid (10 mg/kg) used in this experiment produces a 10-fold elevation in circulating corticosterone levels at both 1 and 3 h after administration. These results suggest that part of the endangering effects of glucocorticoids on hippocampal and cortical neurons may be due to augmentation of calpain-induced spectrin proteolysis. The attenuation of kainic acid-induced synthesis of hsp70 by ADX indicates that the cellular stress produced by EAAs is regulated in part by glucocorticoids. In addition, the elevation in endogenous corticosterone levels produced by kainic acid appears to be a significant factor contributing to the neuronal damage produced by this agent.  相似文献   

14.
15.
Intracerebral injection of kainic acid in cerebral cortex, hippocampus or amygdala in cats chronically implanted showed that: 1) Hippocampus and amygdala presented a greater sensitivity than the cerebral cortex, while hippocampus presented a greater sensitivity than the amygdala to the generation of an epileptic focus. 2) Comparison of latency, mean duration of afterdischarges, and the mean time period to obtain the peak intensity of the afterdischarge in the three cited structures, showed that mean latency of the first afterdischarge was significantly shorter in hippocampus and amygdala compared with the cerebral cortex. Moreover the mean time period to reach the peak intensity of the afterdischarge was again shorter in the subcortical structures. 3) The epileptic foci both in hippocampus and amygdala were blocked by CNQX and muscimol. 4) The behavioral changes depended on the intensity of the epileptic process. Tonic-clonic convulsions appeared only when the motor cerebral cortex was involved. Finally, 5) kainic acid injections in hippocampus and amygdala elicited an intense neuronal destruction and gliosis of these structures. We conclude that intracerebral injection of low doses of kainic acid in cats represent a good model to study focal epileptic thresholds in the CNS.  相似文献   

16.
It was shown in the experiments on rats that intracerebroventricular administration of kainic acid (0.01, 0.05 microgram) after brain trauma, resulted in the occurrence of behavioral and electrographic convulsive disturbances; maximal expression of epileptic activity was obtained in entorhinal cortex and ventral hippocampus. Kainic acid induced epileptic reactions in nontraumatized rats only if injected in dose 0.1 microgram. Brain trauma did not lead to changes in seizures intensity induced by systemic picrotoxin administration. It is concluded that the formation of generator of pathologically enhanced excitation in limbic structures via increase of excitor glutamatergic neurotransmission is the important mechanism of traumatic epilepsy.  相似文献   

17.
1. Protooncogene c-fos mRNA levels were determined in the rat cerebral cortex, hippocampus, and cerebellum after exposure to a combined forced swimming and confinement stress. The stress resulted in an increase in c-fos mRNA levels in all three brain areas.2. In an effort to elucidate the neurotransmitter systems involved in this stress-induced increase, animals were injected, prior to exposure to the stress, with either diazepam, MK-801, or propranolol.3. In both the cerebral cortex and the hippocampus the stress-induced increase in c-fos mRNA was inhibited by MK-801, suggesting that it is mediated via NMDA receptors. In the hippocampus, propranolol had a similar effect, indicating that -adrenergic receptors are also involved in the stress-induced increase in c-fos mRNA.4. On the other hand, the increase in c-fos mRNA produced by the stress of the injection was inhibited in the cerebral cortex by diazepam or propranolol and in the hippocampus only by diazepam. Furthermore, administration of MK-801 resulted in an increase in c-fos mRNA in the hippocampus of the nonstressed animals. In the cerebellum no one of the three drugs employed affected c-fos mRNA levels in either stressed or nonstressed animals.5. Our results thus show that various forms of stress activate, in different brain areas, neurons with either NMDA, -adrenergic, and/or GABA-A receptors.  相似文献   

18.
Three days after systemic administration of kainic acid (15 mg/kg, s.c.), selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, and high-affinity choline uptake) and GABAergic parameters [benzodiazepine and gamma-aminobutyric acid (GABA) receptors] were studied in the frontal and piriform cortex, dorsal hippocampus, amygdaloid complex, and nucleus basalis. Kainic acid treatment resulted in a significant reduction of choline acetyltransferase activity in the piriform cortex (by 20%), amygdala (by 19%), and nucleus basalis (by 31%) in comparison with vehicle-injected control rats. A lower activity of acetylcholinesterase was also determined in the piriform cortex following parenteral kainic acid administration. [3H]Quinuclidinyl benzilate binding to muscarinic acetylcholine receptors was significantly decreased in the piriform cortex (by 33%), amygdala (by 39%), and nucleus basalis (by 33%) in the group treated with kainic acid, whereas such binding in the hippocampus and frontal cortex was not affected by kainic acid. Sodium-dependent high-affinity choline uptake into cholinergic nerve terminals was decreased in the piriform cortex (by 25%) and amygdala (by 24%) after kainic acid treatment. In contrast, [3H]flunitrazepam binding to benzodiazepine receptors and [3H]muscimol binding to GABA receptors were not affected 3 days after parenteral kainic acid application in any of the brain regions studied. The data indicate that kainic acid-induced limbic seizures result in a loss of cholinergic cells in the nucleus basalis that is paralleled by degeneration of cholinergic fibers and cholinoceptive structures in the piriform cortex and amygdala, a finding emphasizing the important role of cholinergic mechanisms in generating and/or maintaining seizure activity.  相似文献   

19.
20.
Astrocytes are very sensitive to alterations in the brain environment and respond showing a phenomenon known as astroglial reaction. S100beta is an astroglial derived neurotrophic factor, seems to be involved in neuroplasticity. The aim of this work was to study the astrocytic response in rat hippocampus and cerebral cortex after repetitive seizures induced by 3-mercaptopropionic acid (MP) administration. Immunocytochemical studies were performed to analyze GFAP and S100beta expression. Both studied areas showed hypertrophied astrocytes with enlarged processes and increased soma size. Astrocyte hyperplasia was observed only in the cerebral cortex. A significant decrease in the astrocytic S100beta immunostaining occurs after MP treatment. These results indicate that MP administration induces an astroglial reaction with reduced intracellular S100beta level. The observed reduction in astroglial S100beta could be related to the release of this factor to the extracellular space, where it may produce neurotrophic or deleterious effects accordingly to the concentration achieved. The mechanism of this remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号