首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Viral gene therapy has exceptional potential as a specifically tailored cancer treatment. However, enthusiasm for cancer gene therapy has varied over the years, partly owing to safety concerns after the death of a young volunteer in a clinical trial for a genetic disease. Since this singular tragedy, results from numerous clinical trials over the past 10 years have restored the excellent safety profile of adenoviral vectors. These vectors have been extensively studied in phase I and II trials as intraprostatically administered agents for patients with locally recurrent and high-risk local prostate cancer. Promising therapeutic responses have been reported in several studies with both oncolytic and suicide gene therapy strategies. The additional benefit of combining gene therapy with radiation therapy has also been realized; replicating adenoviruses inhibit DNA repair pathways, resulting in a synergistic sensitization to radiation. Other, nonreplicating suicide gene therapy strategies are also significantly enhanced with radiation. Combined radiation/gene therapy is currently being studied in phase I and II clinical trials and will likely be the first adenoviral gene therapy mechanism to become available to urologists in the clinic. Systemic gene therapy for metastatic disease is also a major goal of the field, and clinical trials are currently under way for hormone-resistant metastatic prostate cancer. Second- and third-generation "re-targeted" viral vectors, currently being developed in the laboratory, are likely to further improve these systemic trials.  相似文献   

3.
Gene therapy has recently witnessed accelerated progress as a new therapeutic strategy with the potential to treat a range of inherited and acquired diseases. Billions of dollars have been invested in basic and clinical research on gene medicine, with ongoing clinical trials focused on cancer, monogenic diseases, cardiovascular diseases and other refractory diseases. Advances addressing the inherent challenges of gene therapy, particularly those related to retaining the delivery efficacy and minimizing unwanted immune responses, provide the basis for the widespread clinical application of gene medicine. Several types of genes delivered by viral or non‐viral delivery vectors have demonstrated encouraging results in both animals and humans. As augmented by clinical indications, gene medicine techniques have rapidly become a promising alternative to conventional therapeutic strategies because of their better clinical benefit and lower toxicities. Their application in the clinic has been extensive as a result of the approval of many gene therapy drugs in recent years. In this review, we provide a comprehensive overview of the clinical translation of gene medicine, focusing on the key events and latest progress made regarding clinical gene therapy products. We also discuss the gene types and non‐viral materials with respect to developing gene therapeutics in clinical trials.  相似文献   

4.
Current prospects for RNA interference-based therapies   总被引:1,自引:0,他引:1  
RNA interference (RNAi) is a powerful approach for reducing expression of endogenously expressed proteins. It is widely used for biological applications and is being harnessed to silence mRNAs encoding pathogenic proteins for therapy. Various methods - including delivering RNA oligonucleotides and expressing RNAi triggers from viral vectors - have been developed for successful RNAi in cell culture and in vivo. Recently, RNAi-based gene silencing approaches have been demonstrated in humans, and ongoing clinical trials hold promise for treating fatal disorders or providing alternatives to traditional small molecule therapies. Here we describe the broad range of approaches to achieve targeted gene silencing for therapy, discuss important considerations when developing RNAi triggers for use in humans, and review the current status of clinical trials.  相似文献   

5.
To date, almost 2600 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our November 2017 update, we have entries on 2597 trials undertaken in 38 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and the genes that have been transferred. Details of the analyses presented, and our searchable database are available via The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical . We also provide an overview of the progress being made in gene therapy clinical trials around the world, and discuss key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies, which have the potential to transform the field moving forward.  相似文献   

6.
Antisense apolipoprotein B therapy: where do we stand?   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: Antisense oligonucleotides are novel therapeutic agents that reduce the number of specific mRNAs available for translation of the encoded protein. ISIS 301012 is an antisense oligonucleotide developed to reduce the hepatic synthesis of apolipoprotein B-100. Apolipoprotein B-100 is made in the liver, and antisense oligonucleotides preferentially distribute to that organ, so antisense apolipoprotein B-100 may have potential as an efficacious lipid-lowering agent. RECENT FINDINGS: Recently, in healthy volunteers and in mild dyslipidaemic patients, this strategy as monotherapy or in conjunction with statins has shown unparalleled efficacy in reducing apolipoprotein B-100 and LDL-cholesterol. Tolerance for this novel therapy is encouraging and safety concerns currently only relate to mild injection-site reactions and rare liver-function test abnormalities. It should be noted, however, that these safety results were obtained in relatively few individuals. SUMMARY: ISIS 301012 has initially shown promising results in experimental animal models, and in clinical trials in humans. Besides the effect of reducing apolipoprotein B-100 and LDL-cholesterol, this compound also significantly lowers plasma triglycerides. Safety concerns related to the drug include increased liver-function tests. To date no evidence of hepatic steatosis has been reported. Nonetheless, clinical trials of longer duration are required to demonstrate further safety.  相似文献   

7.
Antisense oligonucleotides as therapeutic agents.   总被引:27,自引:0,他引:27  
Antisense oligonucleotides can block the expression of specific target genes involved in the development of human diseases. Therapeutic applications of antisense techniques are currently under investigation in many different fields. The use of antisense molecules to modify gene expression is variable in its efficacy and reliability, raising objections about their use as therapeutic agents. However, preliminary results of several clinical studies demonstrated the safety and to some extent the efficacy of antisense oligodeoxynucleotides (ODNs) in patients with malignant diseases. Clinical response was observed in some patients suffering from ovarian cancer who were treated with antisense targeted against the gene encoding for the protein kinase C-alpha. Some hematological diseases treated with antisense oligos targeted against the bcr/abl and the bcl2 mRNAs have shown promising clinical response. Antisense therapy has been useful in the treatment of cardiovascular disorders such as restenosis after angioplasty, vascular bypass graft occlusion, and transplant coronary vasculopathy. Antisense oligonucleotides also have shown promise as antiviral agents. Several investigators are performing trials with oligonucleotides targeted against the human immunodeficiency virus-1 (HIV-1) and hepatitis viruses. Phosphorothioate ODNs now have reached phase I and II in clinical trials for the treatment of cancer and viral infections, so far demonstrating an acceptable safety and pharmacokinetic profile for continuing their development. The new drug Vitravene, based on a phosphorothioate oligonucleotide designed to inhibit the human cytomegalovirus (CMV), promises that some substantial successes can be reached with the antisense technique.  相似文献   

8.
9.
10.
The concept of gene therapy was envisioned soon after the emergence of restriction endonucleases and subcloning of mammalian genes in phage and plasmids. Over the ensuing decades, vectors were developed, including nonviral methods, integrating virus vectors (gammaretrovirus and lentivirus), and non-integrating virus vectors (adenovirus, adeno-associated virus, and herpes simplex virus vectors). Preclinical data demonstrated potential efficacy in a broad range of animal models of human diseases, but clinical efficacy in humans remained elusive in most cases, even after decades of experience in over 1000 trials. Adverse effects from gene therapy have been observed in some cases, often because of viral vectors retaining some of the pathogenic potential of the viruses upon which they are based. Later generation vectors have been developed in which the safety and/or the efficiency of gene transfer has been improved. Most recently this work has involved alterations of vector envelope or capsid proteins either by insertion of ligands to target specific receptors or by directed evolution. The disease targets for gene therapy are multiple, but the most promising data have come from monogenic disorders. As the number of potential targets for gene therapy continues to increase, and a substantial number of trials continue with both the standard and the later generation vector systems, it is hoped that a therapeutic niche for gene therapy will emerge in the coming decades.  相似文献   

11.
To date, over 1800 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical trials from official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our June 2012 update, we have entries on 1843 trials undertaken in 31 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and which genes have been transferred. Details of the analyses presented, and our searchable database are available on The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical . We also provide an overview of the progress being made in clinical trials of gene therapy approaches around the world and discuss the prospects for the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
With recent advances in genetic engineering, tumor biology, and immunology, gene therapy has been recognized as a promising new treatment option for various cancers, including prostate cancer. Several clinical trials of prostate cancer gene therapy, using therapeutic genes which include suicide genes, immunomodulatory genes, tumor suppressor genes, and anti-oncogenes, are under way and preliminary reports have emerged. Although gene therapy for prostate cancer is still at an early stage and requires additional technological breakthroughs, new insights obtained from recent clinical trials indicate a promising potential for prostate cancer gene therapy. In this report, general concepts, current progress, and future prospects in prostate cancer gene therapy are summarized.  相似文献   

13.
肿瘤基因治疗的靶向策略   总被引:8,自引:2,他引:8  
对肿瘤组织的靶向性可以提高基因治疗的效果 ,避免对正常组织的损伤 ,并且能降低作为载体的微生物对机体的危害。对于瘤内注射的给药方法 ,靶向性似乎显得不是特别重要 ,但是如果要系统给药 ,靶向性是很关键的一个问题。靶向基因治疗肿瘤可以通过靶向基因导入和靶向基因表达来实现。近年来 ,在靶向基因导入方面的研究有很多进展 ,例如 ,用双亲性的桥连分子协助腺病毒和逆转录病毒靶向转导 ;在各种病毒载体的衣壳蛋白中插入靶向性的小肽或较大的多肽靶向结构域 ;增殖病毒作为一种很有前途的抗肿瘤制剂可有效地靶向杀伤肿瘤细胞。受体介导的DNA或DNA 脂质体复合物的靶向系统和其他一些靶向性的有疗效的载体 ,如细菌 ,也处于研究中。其中的一些载体已经进入临床实验。为了实现基因的靶向可调控表达 ,组织或肿瘤特异性的启动子和人工合成的可调控表达系统被用来调控治疗基因的表达。反义核酸、核酶以及脱氧核酶 (DNAzyme)被用来靶向抑制与肿瘤发生密切相关基因的表达。  相似文献   

14.
Gene therapy. Therapeutic approaches and implications   总被引:4,自引:0,他引:4  
The present article is an overview of gene therapy with an emphasis on different approaches and its implications in the clinic. Genetic interventions have been applied to the diagnosis of and therapy for an array of human diseases. The initial concept of gene therapy was focused on the treatment of genetic diseases. Subsequently, the field of gene therapy has been expanded, with a major focus on cancer. Although the results of early gene therapy-based clinical trials have been encouraging, there is a need for gene delivery vectors that feature reduced immunogenicity and improved targeting ability. The results of phases I/II clinical trials have suggested the important role of gene therapy as a versatile and powerful treatment tool, especially for human cancers. One reasonable expectation is that performing gene therapy at an earlier stage in the disease process or for minimal residual disease may be more advantageous.  相似文献   

15.
The easy accessibility of the skin as a therapeutic target provides an exciting potential for this organ for the development of gene therapy protocols for cutaneous diseases and a variety of metabolic disorders. Thus far, full phenotypic reversion of a diseased phenotype has been achieved in vivo for junctional epidermolysis bullosa and X-linked or lamellar ichthyosis and in vitro for xeroderma pigmentosum. These recessive skin diseases are characterized by skin blistering, abnormalities in epidermal differentiation and increased development of skin cancers, respectively. Corrective gene delivery at both molecular and functional levels was achieved by transduction of cultured skin cells using retroviral vectors carrying the specific curative cDNA. These positive results should prompt clinical trials based on transplantation of artificial epithelia reconstructed ex vivo using genetically modified keratinocytes. Promising results have also been obtained in phenotypic reversion of cells isolated from patients suffering from a number of metabolic diseases such as gyrate atrophy, familial hypercholesterolemia or phenylketonuria. In these diseases transplantation of autologous artificial epithelia expressing the transgenes of interest or direct transfer of the DNA to the skin represents a potential therapeutic approach for the systemic delivery of active molecules. Successful cutaneous gene therapy trials, however, require development of protocols for efficient gene transfer to epidermal stem cells, and information about the host immune response to the recombinant polypeptides produced by the implanted keratinocytes. The availability of spontaneous animal models for genodermatoses will validate the gene therapy approach in preclinical trials.  相似文献   

16.
Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results.  相似文献   

17.
Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.  相似文献   

18.
Gene therapy of neoplastic liver diseases   总被引:5,自引:0,他引:5  
Since advanced liver cancer lacks effective therapy in most cases, a considerable interest has been drawn towards gene therapy. Natural or chimerical genes can be transferred to the tumour itself, the non-tumoral liver, or even distant tissues using a variety of vectors administered by intratumoral or intravascular routes. The desired selectivity in gene expression can be achieved by increasing the specificity of gene delivery or by controlling gene expression with tumour-specific promoters, such as alpha-fetoprotein or carcinoembryonic antigen. There are two main approaches to gene therapy of liver cancer aiming at killing directly malignant cells or at improving the host's defensive systems, respectively. The former include replacing the lost function of tumour suppressor genes, inhibiting the action of activated oncogenes, sensitising tumour cells to prodrugs, or infecting the tumoral tissue with viruses that replicate selectively in cancer cells. Host defences can be improved by stimulating the antitumoral immune response, or by interfering with tumour vessel formation. Progress in gene therapy of liver cancer depends very much on information collected from well-designed clinical trials. This information includes knowledge of whether an efficient gene transfer has been achieved and what is the duration and magnitude of gene expression in the transduced tissues. Hopefully, magnetic resonance or positron emission tomography (PET) may turn out to be reliable procedures for tracing transgene expression in humans. Pre-clinical evidence and early clinical trials strongly suggest that there is a place for gene therapy of liver malignancies.  相似文献   

19.
Despite some reports of toxicity in recent clinical trials, many scientists believe that the use of gene therapy in the treatment of congenital genetic defects and acquired disorders has too much potential to abandon. Hematopoietic stem cells (HSCs) have been primary targets for gene therapy owing to their capacity for differentiation and self-renewal, whereby multiple cell lineages can potentially be corrected for the lifetime of an individual. These efforts represent a long-term investment towards broadening physicians' treatment options for patients whose diseases, in particular certain immunodeficiencies, are fatal and where no other therapy is available. We review the recent progress and clinical triumphs as well as the reported toxicity related to insertional mutagenesis. We also discuss the current risk-to-benefit estimates and future strategies to reduce the risks and allow full realization of clinical potential. Scientists are continually revising protocols: going both from "bench to bedside" and, as strikingly demonstrated by HSC gene therapy, from "bedside to bench."  相似文献   

20.
The most dramatic event of the past year in the field of gene therapy has been the initiation of clinical trials involving the introduction of genetically altered cells into human beings. Four studies, three involving new approaches to cancer therapy and one involving the treatment of adenosine deaminase deficiency, are presently under way. There has also been significant recent progress in the technology of gene transfer relevant to gene therapy. This progress, along with the recent clinical therapy trials, is the subject of this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号