首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
Immunological characteristics were assessed for prospective risk of clinical malaria in a longitudinally followed population in a holoendemic area of Tanzania. Baseline characteristics including crude Plasmodium falciparum extract-specific IgE and IgG; total IgE; and parasitological indices, e.g. number of P. falciparum clones, were investigated among 700 asymptomatic individuals. Cox regression analysis estimated the risk of succumbing to a new clinical episode during a 40 weeks follow up. High anti-P. falciparum IgE levels were associated with reduced risk of acute malaria in all age groups independently of total IgE levels. Statistically significant reduced odds ratio of 0.26 (95% CI, 0.09-0.72, P=0.010) and 0.44 (95% CI, 0.19-0.99, P=0.047) for the two highest fifths, respectively was observed after adjustment for age, sex, total IgE, numbers of parasite clones per infection and HIV-1 seropositivity. In contrast, high levels of malaria specific IgG or total IgE were not associated with reduced risk to succumb to a new clinical episode. A protective effect of asymptomatic multiclonal P. falciparum infections was also confirmed. For the first time, anti-malarial IgE levels in asymptomatic individuals in endemic area are found to be associated with reduced risk for subsequent malaria disease. Specific IgE antibodies may play role in maintaining anti-malarial immunity, or indicate other aspects of immune function relevant for protection against malaria.  相似文献   

2.

Background

Protective immunity to malaria is acquired after repeated infections in endemic areas. Asymptomatic multiclonal P. falciparum infections are common and may predict host protection. Here, we have investigated the effect of clearing asymptomatic infections on the risk of clinical malaria.

Methods

Malaria episodes were continuously monitored in 405 children (1–6 years) in an area of moderate transmission, coastal Kenya. Blood samples collected on four occasions were assessed by genotyping the polymorphic P. falciparum merozoite surface protein 2 using fluorescent PCR and capillary electrophoresis. Following the second survey, asymptomatic infections were cleared with a full course of dihydroartemisinin.

Results

Children who were parasite negative by PCR had a lower risk of subsequent malaria regardless of whether treatment had been given. Children with ≥2 clones had a reduced risk of febrile malaria compared with 1 clone after clearance of asymptomatic infections, but not if asymptomatic infections were not cleared. Multiclonal infection was associated with an increased risk of re-infection after drug treatment. However, among the children who were re-infected, multiclonal infections were associated with a shift from clinical malaria to asymptomatic parasitaemia.

Conclusion

The number of clones was associated with exposure as well as blood stage immunity. These effects were distinguished by clearing asymptomatic infection with anti-malarials. Exposure to multiple P. falciparum infections is associated with protective immunity, but there appears to be an additional effect in untreated multiclonal infections that offsets this protective effect.  相似文献   

3.

Background

Intermittent preventive treatment (IPT) of malaria involves administration of curative doses of antimalarials at specified time points to vulnerable populations in endemic areas, regardless whether a subject is known to be infected. The effect of this new intervention on the development and maintenance of protective immunity needs further understanding. We have investigated how seasonal IPT affects the genetic diversity of Plasmodium falciparum infections and the risk of subsequent clinical malaria.

Material and Methods

The study included 2227 Ghanaian children (3–59 months) who were given sulphadoxine-pyrimethamine (SP) bimonthly, artesunate plus amodiaquine (AS+AQ) monthly or bimonthly, or placebo monthly for six months spanning the malaria transmission season. Blood samples collected at three post-interventional surveys were analysed by genotyping of the polymorphic merozoite surface protein 2 gene. Malaria morbidity and anaemia was monitored during 12 months follow-up.

Results

Monthly IPT with AS+AQ resulted in a marked reduction in number of concurrent clones and only children parasite negative just after the intervention period developed clinical malaria during follow-up. In the placebo group, children without parasites as well as those infected with ≥2 clones had a reduced risk of subsequent malaria. The bimonthly SP or AS+AQ groups had similar number of clones as placebo after intervention; however, diversity and parasite negativity did not predict the risk of malaria. An interaction effect showed that multiclonal infections were only associated with protection in children without intermittent treatment.

Conclusion

Molecular typing revealed effects of the intervention not detected by ordinary microscopy. Effective seasonal IPT temporarily reduced the prevalence and genetic diversity of P. falciparum infections. The reduced risk of malaria in children with multiclonal infections only seen in untreated children suggests that persistence of antigenically diverse P. falciparum infections is important for the maintenance of protective malaria immunity in high transmission settings.  相似文献   

4.
Infections caused by the malaria parasite Plasmodium falciparum often comprise multiple genetically distinct clones. Individuals in endemic areas can have different clones detected in their peripheral blood over a few days or even hours. This reveals interesting within-host dynamics of multiclonal infections, which seem to differ in asymptomatic and symptomatic infections. As well as being an intriguing biological phenomenon that merits further understanding, the extensive dynamics of P. falciparum infections have practical implications on the design and interpretation of malaria studies. Most assessments will, indeed, only provide snapshots of the parasite population dynamics.  相似文献   

5.
Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity.  相似文献   

6.
In areas where malaria is endemic, infected individuals generally harbor a mixture of genetically distinct Plasmodium falciparum parasite populations. For the first time, we studied temporal variations of blood parasite densities and circulating genotypes in asymptomatic Senegalese children, at time intervals as short as 4-12 h. Twenty-one Senegalese children, presenting with an asymptomatic P. falciparum infection, were sampled eight times within three days. Parasite density was assessed by thick blood smears, and all infecting genotypes were quantified by the fragment-analysis method. Parasite densities showed dramatic fluctuations up to a 1 to 1,000 ratio, with at least one peak of parasite density. Polyclonal infections were detected in all children, with a multiplicity of infection of 5.2-6.8 genotypes per child. A single sample never reflected the full complexity of the parasite populations hosted by a given individual. Genotypes with different behaviors were detected in all children, some genotypes undergoing major fluctuations, while others were highly stable during the follow-up. A single peripheral blood sampling does not reflect the total parasite load. Repeated sampling is needed to have a more detailed scheme of parasite population dynamics and a better knowledge of the true complexity of an infection.  相似文献   

7.
8.
Vardo AM  Schall JJ 《Molecular ecology》2007,16(13):2712-2720
Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or during periods/locations when transmission intensity is low.  相似文献   

9.
Plasmodium falciparum malaria episodes may vary considerably in their severity and clinical manifestations. There is good evidence that host genetic factors contribute to this variability. To date, most genetic studies aiming at the identification of these genes have used a case/control study design for severe malaria, exploring specific candidate genes. Here, we performed a family-based genetic study of falciparum malaria related phenotypes in two independent longitudinal survey cohorts, as a first step towards the identification of genes and mechanisms involved in the outcome of infection. We studied two Senegalese villages, Dielmo and Ndiop that differ in ethnicity, malaria transmission and endemicity. We performed genome-scan linkage analysis of several malaria-related phenotypes both during clinical attacks and asymptomatic infection. We show evidence for a strong genetic contribution to both the number of clinical falciparum malaria attacks and the asymptomatic parasite density. The asymptomatic parasite density showed linkage to chromosome 5q31 (LOD = 2.26, empirical p = 0.0014, Dielmo), confirming previous findings in other studies. Suggestive linkage values were also obtained at three additional chromosome regions: the number of clinical malaria attacks on chromosome 5p15 (LOD = 2.57, empirical p = 0.001, Dielmo) and 13q13 (LOD = 2.37, empirical p = 0.0014 Dielmo), and the maximum parasite density during asymptomatic infection on chromosome 12q21 (LOD = 3.1, empirical p<10(-4), Ndiop). While regions of linkage show little overlap with genes known to be involved in severe malaria, the four regions appear to overlap with regions linked to asthma or atopy related traits, suggesting that common immune related pathways may be involved.  相似文献   

10.
Asymptomatic malaria infections represent a major challenge in malaria control and elimination in Africa. They are reservoirs of malaria parasite that can contribute to disease transmission. Therefore, identification and control of asymptomatic infections are important to make malaria elimination feasible. In this study, we investigated the extent and distribution of asymptomatic malaria in Western Kenya and examined how varying parasitemia affects performance of diagnostic methods including microscopy, conventional PCR, and quantitative PCR. In addition, we compared parasite prevalence rates and parasitemia levels with respect to topography and age in order to explore factors that influence malaria infection. Over 11,000 asymptomatic blood samples from children and adolescents up to 18 years old representing broad areas of Western Kenya were included. Quantitative PCR revealed the highest parasite positive rate among all methods and malaria prevalence in western Kenya varied widely from less than 1% to over 50%. A significantly lower parasitemia was detected in highland than in lowland samples and this contrast was also observed primarily among submicroscopic samples. Although we found no correlation between parasitemia level and age, individuals of younger age group (aged <14) showed significantly higher parasite prevalence. In the lowlands, individuals of aged 5–14 showed significantly higher prevalence than those under age 5. Our findings highlight the need for a more sensitive and time-efficient assay for asymptomatic malaria detection particularly in areas of low-transmission. Combining QPCR with microscopy can enhance the capacity of detecting submicroscopic asymptomatic malaria infections.  相似文献   

11.
Following infection with Plasmodium falciparum malaria, children in endemic areas develop antibodies specific to antigens on the parasite-infected red cell surface of the infecting isolate, antibodies associated with protection against subsequent infection with that isolate. In some circumstances induction of antibodies to heterologous parasite isolates also occurs and this has been suggested as evidence for cross-reactivity of responses against the erythrocyte surface. The role of these relatively cross-reactive antibodies in protection from clinical malaria is currently unknown. We studied the incidence of clinical malaria amongst children living on the coast of Kenya through one high transmission season. By categorising individuals according to their pre-season parasite status and antibody response to the surface of erythrocytes infected with four parasite isolates we were able to identify a group of children, those who failed to make a concomitant antibody response in the presence of an asymptomatic parasitaemia, at increased susceptibility to clinical malaria in the subsequent 6 months. The fact that this susceptible group was identified regardless of the parasite isolate tested infers a cross-reactive or conserved target is present on the surface of infected erythrocytes. Identification of this target will significantly aid understanding of naturally acquired immunity to clinical malaria amongst children in endemic areas.  相似文献   

12.
Quantifying the relative proportion of coexisting genotypes (clones) of a malaria parasite within its vertebrate host's blood would provide insights into critical features of the biology of the parasite, including competition among clones, gametocyte sex ratio, and virulence. However, no technique has been available to extract such data for natural parasite-host systems when the number of clones cycling in the overall parasite population is likely to be large. Recent studies find that data from genetic analyzer instruments for microsatellite markers allow measuring clonal proportions. We conducted a validation study for Plasmodium mexicanum and Plasmodium falciparum by mixing DNA from single-clone infections to simulate mixed infections of each species with known proportions of clones. Results for any mixture of DNA gave highly reproducible results. The relationship between known and measured relative proportions of clones was linear, with high regression r2 values. Known and measured clone proportions for simulated infections followed over time (mixtures) were compared with 3 methods: using uncorrected data, with uncorrected data and confidence intervals constructed from observed experimental error, and using a baseline mixture of equal proportions to calibrate all other results. All 3 methods demonstrated value in studies of mixed-genotype infections sampled a single time or followed over time. Thus, the method should open new windows into the biology of malaria parasites.  相似文献   

13.
In Western Amazon areas with perennial malaria transmission, long term residents frequently develop partial immunity to malarial infection caused either by Plasmodium falciparum or P. vivax, resulting in a considerable number of non-symptomatically infected individuals. For yet unknown reasons, these individuals sporadically develop symptomatic malaria. In order to identify if determined parasite genotypes, defined by a combination of eleven microsatellite markers, were associated to different outcomes--symptomatic or asymptomatic malaria--we analyzed infecting P. falciparum parasites in a suburban riverine population. Despite of detecting a high degree of diversity in the analyzed samples, several microsatellite marker alleles appeared accumulated in parasites from non-symptomatic infections. This result may be interpreted that a number of microsatellites, which are not directly related to antigenic features, could be associated to the outcome of malarial infection. The result may also point to a low frequency of recombinatorial events which otherwise would dissociate genes under strong immune pressure from the relatively neutral microsatellite loci.  相似文献   

14.
Acquired immunity to Plasmodium falciparum infection causes a change from frequent, sometimes life-threatening, malaria in young children to asymptomatic, chronic infections in older children and adults. Little is known about how this transition occurs but antibodies to the extremely diverse PfEMP1 parasite antigens are thought to play a role. PfEMP1 is encoded by a family of 60 var genes that undergo clonal antigenic variation, potentially creating an antigenically heterogeneous infecting population of parasites within the host. Previous theoretical work suggests that antibodies to PfEMP1 may play a role in “orchestrating” their expression within infections leading to sequential, homogeneous expression of var genes, and prolonged infection chronicity. Here, using a cloning and sequencing approach we compare the var expression homogeneity (VEH) between isolates from children with asymptomatic and clinical infections. We show that asymptomatic infections have higher VEH than clinical infections and a broader host antibody response. We discuss this in relation to the potential role of host antibodies in promoting chronicity of infection and parasite survival through the low transmission season.  相似文献   

15.
The Fulani are known to be less susceptible to Plasmodium falciparum malaria infections and to have lower parasitaemia despite living under similar malaria transmission intensity compared with other ethnic tribes. The aim of the present study was to examine whether the Fulani were more polarised towards Th2 as reflected by higher numbers of malaria-specific IL-4- and IL-10-producing cells and lower numbers of IFN-gamma- and IL-12-producing cells as compared to their neighbour ethnic tribe, the Dogon of Mali. Total IgE and both anti-malaria IgE and IgG antibodies were measured by ELISA and the numbers of IL-4-, IFN-gamma-, IL-10- and IL-12-producing cells were enumerated using enzyme-linked ImmunoSpot assay (ELISPOT). Numbers of parasite clones were detected by polymerase chain reaction (PCR). The study was performed outside the transmission period and all individuals included were asymptomatic. The results revealed that the Fulani were less parasitised, had fewer circulating parasite clones in their blood, had significantly higher anti-malaria IgG and IgE antibodies and higher proportions of malaria-specific IL-4- and IFN-gamma-producing cells compared to the Dogon. The higher antigen-specific production of IL-4 among the Fulani was statistically significant both before and after adjustment for level of spontaneous cytokine production, while greater IFN-gamma production only attained statistical significance after adjustment for spontaneous levels. Taken together, the association of higher anti-malarial IgE and IgG antibodies and increased numbers of specific IL-4- and IFN-gamma-producing cells compared to the ethnic sympatric tribe, the Dogon, may assist in explaining the lower susceptibility to malaria observed in the Fulani.  相似文献   

16.
We analyzed prospectively 326 laboratory-confirmed, uncomplicated malarial infections (46.3% due to Plasmodium vivax, 35.3% due to P. falciparum, and 18.4% mixed-species infections) diagnosed in 162 rural Amazonians aged 5-73 years. Thirteen symptoms (fever, chills, sweating, headache, myalgia, arthralgia, abdominal pain, nausea, vomiting, dizziness, cough, dyspnea, and diarrhea) were scored using a structured questionnaire. Headache (59.8%), fever (57.1%), and myalgia (48.4%) were the most frequent symptoms. Ninety-six (29.4%) episodes, all of them diagnosed during cross-sectional surveys of the whole study population (96.9% by molecular technique only), were asymptomatic. Of 93 symptom-less infections left untreated, only 10 became symptomatic over the next two months following diagnosis. Fever was perceived as " intense " in 52.6% of 230 symptomatic malaria episodes, with no fever reported in 19.1% episodes although other symptoms were present. We found significant differences in the prevalence and perceived intensity of fever and other clinical symptoms in relation to parasite load at the time of diagnosis and patient's age, cumulative exposure to malaria, recent malaria morbidity, and species of malaria parasite. These factors are all likely to affect the effectiveness of malaria control strategies based on active or passive detection of febrile subjects in semi-immune populations.  相似文献   

17.
A study was carried out with 425 children aged 0-14 yr residing in Bolifamba, Cameroon, to investigate the effect of Plasmodium falciparum malaria and intestinal helminth coinfection on anemia and to identify significant predictors of anemia in the community. Blood was collected by finger prick to determine malaria parasitemia and packed cell volume (PCV). The Kato-Katz technique was used to assess the prevalence and egg load of intestinal helminths. The prevalence of P. falciparum malaria, intestinal helminth infections, and coinfection was 64.2%, 38.3%, and 24.7%, respectively. Coinfections in which heavy helminth loads were detected had corresponding high mean P. falciparum parasite loads >5,000/microl compared with coinfections involving light helminth burden. The overall prevalence of anemia was 30.8%. Anemia prevalence increased significantly with P. falciparum parasite load >5,000/microl compared with lower densities (chi2 = 6.734, P = 0.034). Anemia prevalence was significantly higher in febrile children compared with nonfebrile children (chi2 = 6.041, P = 0.014). Children infected exclusively with P. falciparum recorded the highest prevalence of anemia compared with uninfected children, those with coinfections, and those harboring only helminths. This difference in prevalence was significant (chi2 = 6.734, P = 0.031). Multiple regression analysis exposed fever (P > 0.001) and age (P = 0.004) as significant predictors of anemia.  相似文献   

18.

Background

Humans living in regions with high falciparum malaria transmission intensity harbour multi-strain infections comprised of several genetically distinct malaria haplotypes. The number of distinct malaria parasite haplotypes identified from an infected human host at a given time is referred to as the complexity of infection (COI). In this study, an amplicon-based deep sequencing method targeting the Plasmodium falciparum apical membrane antigen 1 (pfama1) was utilized to (1) investigate the relationship between P. falciparum prevalence and COI, (2) to explore the population genetic structure of P. falciparum parasites from malaria asymptomatic individuals participating in the 2007 Demographic and Health Survey (DHS) in the Democratic Republic of Congo (DRC), and (3) to explore selection pressures on geospatially divergent parasite populations by comparing AMA1 amino acid frequencies in the DRC and Mali.

Results

A total of 900 P. falciparum infections across 11 DRC provinces were examined. Deep sequencing of both individuals, for COI analysis, and pools of individuals, to examine population structure, identified 77 unique pfama1 haplotypes. The majority of individual infections (64.5%) contained polyclonal (COI > 1) malaria infections based on the presence of genetically distinct pfama1 haplotypes. A minimal correlation between COI and malaria prevalence as determined by sensitive real-time PCR was identified. Population genetic analyses revealed extensive haplotype diversity, the vast majority of which was shared across the sites. AMA1 amino acid frequencies were similar between parasite populations in the DRC and Mali.

Conclusions

Amplicon-based deep sequencing is a useful tool for the detection of multi-strain infections that can aid in the understanding of antigen heterogeneity of potential malaria vaccine candidates, population genetics of malaria parasites, and factors that influence complex, polyclonal malaria infections. While AMA1 and other diverse markers under balancing selection may perform well for understanding COI, they may offer little geographic or temporal discrimination between parasite populations.
  相似文献   

19.
ABSTRACT: BACKGROUND: Human malaria infections caused by the parasite Plasmodium falciparum often contain more than one genetically distinct parasite. Despite this fact, nearly all studies of multiple strain P. falciparum infections have been limited to determining relative densities of each parasite within an infection. In light of this, new methods are needed that can quantify the absolute number of parasites within a single infection. METHODS: A quantitative PCR (qPCR) method was developed to track the dynamic interaction of P. falciparum infections containing genetically distinct parasite clones in cultured red blood cells. Allele-specific primers were used to generate a standard curve and to quantify the absolute concentration of parasite DNA within multi-clonal infections. Effects on dynamic growth relationships between parasites under drug pressure were examined by treating mixed cultures of drug sensitive and drug resistant parasites with the anti-malarial drug chloroquine at different dosing schedules. RESULTS: An absolute quantification method was developed to monitor the dynamics of P. falciparum cultures in vitro. This method allowed for the observation of competitive suppression, the reduction of parasites numbers due to the presence of another parasite, and competitive release, the improved performance of a parasite after the removal of a competitor. These studies demonstrated that the presence of two parasites led to the reduction in density of at least one parasite. containing both a drug resistant and drug sensitive parasites resulted in an increased proportion of the drug resistant parasite. Moreover, following drug treatment, the resistant parasite experienced competitive release by exhibiting a fitness benefit greater than simply surviving drug treatment, due to the removal of competitive suppression by the sensitive parasite. CONCLUSIONS: The newly developed assay allowed for the examination of the dynamics of two distinct clones in vitro; both competitive suppression and release were observed. A deeper understanding of the dynamic growth responses of multiple strain P. falciparum infections, with and without drug pressure, can improve the understanding of the role of parasite interactions in the spread of drug resistant parasites, perhaps suggesting different treatment strategies.  相似文献   

20.
Over the past decades, the malaria burden in Thailand has substantially declined. Most infections now originate from the national border regions. In these areas, the prevalence of asymptomatic infections is still substantial and poses a challenge for the national malaria elimination program. To determine epidemiological parameters as well as risk factors for malaria infection in western Thailand, we carried out a cohort study in Kanchanaburi and Ratchaburi provinces on the Thailand-Myanmar border. Blood samples from 999 local participants were examined for malaria infection every 4 weeks between May 2013 and Jun 2014. Prevalence of Plasmodium falciparum and Plasmodium vivax was determined by quantitative PCR (qPCR) and showed a seasonal variation with values fluctuating from 1.7% to 4.2% for P. vivax and 0% to 1.3% for P. falciparum. Ninety percent of infections were asymptomatic. The annual molecular force of blood-stage infection (molFOB) was estimated by microsatellite genotyping to be 0.24 new infections per person-year for P. vivax and 0.02 new infections per person-year for P. falciparum. The distribution of infections was heterogenous, that is, the vast majority of infections (>80%) were found in a small number of individuals (<8% of the study population) who tested positive at multiple timepoints. Significant risk factors were detected for P. vivax infections, including previous clinical malaria, occupation in agriculture and travel to Myanmar. In contrast, indoor residual spraying was associated with a protection from infection. These findings provide a recent landscape of malaria epidemiology and emphasize the importance of novel strategies to target asymptomatic and imported infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号