首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The work studied vasopressinergic neurons of hypothalamic supraoptic and paravenricular nuclei of the wild type mice and the neuronal nitric oxide synthase (nNOS) gene knockouted mice at a decrease of the brain catecholamine (CA) level caused by administration of the blocker of activity of tyrosine hydroxylase alpha-methyl-paratyrosine (alpha-MPT) and at the CA level decrease on the background of functional activity of the vasopressinergic neurons caused by dehydration of animals. There were analyzed changes in the number of neurons in both magnocellular hypothalamic nuclei expressing proapoptotic proteins caspase-8 and caspase-9, p53, and antiapoptotic protein Bcl-2. The disturbance of the CA-ergic innervation was shown to be a strong damaging factor leading to apoptosis of neurons regardless of the presence of nNOS in the cells. However, at disturbance of the CA-ergic innervation due to the 5-day mouse dehydration, no death of neurons by apoptosis was revealed. Thus, it is possible that functional activation prevents the hypothalamic vasopressinergic neurons from death at a decrease of the CA level in brain. The main difference of the nNOS gene knockouts is the absence of activation of the Bcl-2 expression under all used actions. This confirms our suggestion about interaction of CA and NO in triggering of expression of the antiapoptotic protein Bcl-2.  相似文献   

2.
3.
4.
To study character of effect of apoptosis signal proteins on activities of neurosecretory cells and neurons of rat hypothalamus, pharmacologic inhibitors of proapoptotic protein p53 Pifithrin-alpha and antiapoptotic protein Bcl-2 HA14-1 were injected into the hypothalamus. Activation of vasopressinergic neurosecretory cells at administration of the blocker Bcl-2 HA14-1 was shown: there were observed an increase of vasopressin mRNA in neurons of hypothalamus supraoptical and paraventricular nuclei, a decrease of the immunoreactive vasopressin content in posterior pituitary, and reduction of diuresis. Inactivation of p53 inhibited release of vasopressin from hypothalamus cell bodies, which is indicated by an elevated content of immunoreactive vasopressin in neurosecretory cell bodies with its unchanged synthesis, a decrease of the neurohormone content in the posterior pituitary, and an increase of diuresis rate. Activation of vasopressinergic neurons of the suprachiasmatic nucleus was also shown. Administration of the blocker Bcl-2 has been revealed to decrease functional activity both of dopaminergic neurons (Zona Incerta) and of dopaminergic neurosecretory cells (arcuate nucleus), in which a decrease of the tyrosine hydroxylase content was observed. The p53 inactivation also led to a decrease of activity of dopaminergic neurosecretory cells of arcuate nucleus, whereas activity of the proteins Zone Incerta did not change. Thus, it has been shown that a change of the apoptotic protein content in vasopressinergic and dopaminergic neurons and neurosecretory cells leads to a change of their functional activity, the character and possibly mechanisms of effects of apoptotic proteins on activities of vasopressin- and dopaminergic cells being different.  相似文献   

5.
To reveal character of interaction of catecholamines (CA) and NO in regulation of development and of the functional state of vasopressinergic (VP-ergic) neurons of supraoptic (SON) and paraventricular (PVN) nuclei, the female rats were injected intraperitoneally with the inhibitor of CA synthesis α-methyl-p-tyrosine, daily, from the 13th to the 20th days of pregnancy. Rat pups born by the females administered with saline at the same period of pregnancy as well as intact pups and adult rats were used as control. Expression of neuronal NO-synthase (nNOS) in neurons of SON and PVN of rat pups at early stages of postnatal development was found to be significantly higher than the definitive level, which allows suggesting participation of NO in development of hypothalamic VP-ergic neurons. The revealed differences of periods of the maximal nNOS expression in the SON and PVN neurons have permitted suggesting development of SON to be completed earlier than that of PVN. The pups exposed to stress at the last third of embryonic development had a long-lasting effect on the state of VP-ergic neurons of the pups after birth. The nNOS expression in neurons does not change, which suggests that NO is not involved in regulation of VP-ergic neurons after exposure to stress at early stages of ontogenesis. A decrease of CA level in the brain at the last third of embryogenesis led to a long preserved decrease of the functional activity of VP-ergic neurons. The nNOS expression in VP-ergic neurons of SON and PVN rose substantially under effect of a compensatory enhancement of tyrosine hydroxylase (TH) expression in neurons of SON and of an increase of the level of CA-ergic innervation of PVN. Thus, we have shown that a decrease of CA level in the embryonic brain leads to an increase of nNOS expression of hypothalamic VP-ergic neurons of rat pups after birth and that the character of NO action on function of VP-ergic neurons does not differ from that of adult animals as soon as at early stages of ontogenesis.  相似文献   

6.
Role of central alpha2-adrenoceptors in the regulation of hypothalamic magnocellular cells was studied under hyperosmotic challenge elicited by hypertonic saline (HS). Rats pretreated with receptor agonist, xylazine (XYL), were injected intraperitoneally with different (low: 0.375, moderate: 0.75, high: 1.5 M) HS 30 min later. The activity of the paraventricular (PVN) and supraoptic (SON) vasopressin and oxytocin perikarya was established by Fos-dual-immunohistochemistry 60 min after HS administration. Results showed that 1/XYL is a potent stimulus for oxytocin but not vasopressin magnocellular cells under basal and weak hyperosmotic conditions 2/highHS completely overlaps the effect of XYL. In addition, XYL partially suppressed Fos expression in the parvocellular PVN cells activated by highHS. The data suggest that alpha2-adrenoceptors may play an important role in the regulation of oxytocinergic PVN and SON neurons under basal and weak hyperosmotic conditions and that alpha2-adrenoceptors may also participate in the control of PVN parvocellular cells under intense osmotic challenge.  相似文献   

7.
Effects of catecholamines (CA) and the character of interaction of CA and NO in regulation of apoptosis were studied in vasopressinergic (VP-ergic) neurons of supraoptic (SON) and paraventricular (PVN) nuclei of rat pups in early postnatal ontogenesis. To study role of CA in regulation of programmed cell death in SON and PVN in the course of embryonal development, pregnant female rats were intraperitoneally injected daily from the 13th to the 20th day with αMPT—a blocker of CA synthesis. The second group of pregnant rats was injected from the 13th to the 20th day with the same volume of saline. The third group was composed of intact animals. The born rat pups were sacrificed at the 3rd and 15th days of life. Caspase 9, Bcl-2, tyrosine hydroxylase, and neuronal NO-synthase (nNOS) in SON and PVN neurons were revealed immunohistochemically, and the amount of immunoreactive substance in neuronal bodies was estimated using the computerized digital analyzer of TV image and Video Test software. Caspase-9 was shown to play an important role in postnatal formation of cellular composition of hypothalamic nonapeptidergic centers by leading to initiation of apoptosis and rejection of “useless” postmitotic SON and PVN neurons. Survival of “useless” nonapeptidergic neurons in early postnatal ontogenesis seems to be connected with antiapoptotic action of Bcl-2. Death of postmitotic neurons, and therefore formation of cellular composition begins earlier and, accordingly, is completed earlier in SON, in which neurons were noted to have a considerable decrease of the caspase-9 expression and, therefore, also a decrease of intensity of neuronal death via caspase-9-dependent pathway. In PVN, neurons continue to die also at the 15th day of rat life, i.e., almost two weeks later than in SON. The observed high correlation between the content of nNOS, caspase-9, and Bcl-2 in the SON and PVN neurons of intact rats of both age groups allows suggesting participation of NO in realization of apoptosis in the course of early postnatal development. The increase of nNOS expression in hypothalamic neurons as a result of disturbances in CA-ergic innervation in embryogenesis might be a possible cause of the long preserved enhancement of expression of apoptosis signal proteins. It can be suggested that CA participate in morphogenesis of hypothalamic neurons by increasing expression of nNOS in neurons and thereby affecting expression of apoptotic proteins.  相似文献   

8.
9.
10.
目的 :研究NO对下丘脑神经元钙激活钾通道 (KCa)的作用及其机制。方法 :采用膜片钳技术内面向外式及细胞贴附式。结果 :NO可直接或通过升高cGMP来提高KCa通道的开放概率 (Po) ,这种增强作用是因为通道开放时间延长及开放频率增加。结论 :下丘脑神经元中NO可通过不同机制激活KCa。  相似文献   

11.
12.
Fasting and hypothalamic catecholamines in goldfish   总被引:1,自引:0,他引:1  
Hypothalamic catecholamines and their metabolites have been studied after 7 days starvation and starvation plus 1 day refeeding in goldfish Carassius auratus. A reduction of norepinephrine (NE) and dopamine (DA) content (21 and 28%, respectively) together with an increase (53%) of NE turnover, without significant modifications of DA turnover was observed following 7 days starvation. These data indicate that NE and DA are involved in the hypothalamic response to fasting in fish. Different mechanisms can be suggested, that is, an activation of noradrenergic system and a decrease of dopaminergic system by fasting. NE would stimulate food intake, whereas DA would inhibit it.  相似文献   

13.
Magnocellular neurosecretory cells were antidromically identifiedin the hypothalamic paraventricular nucleus of urethane-anesthetized,ovariectomized female rats following electrical stimulationof the neurohypophysis The vasopressinergic cells with a phasicpattern of spontaneous discharge and the oxytocinergic cellswith a tonic pattern of discharge were distinguished and usedto examine the response associated with water or NaCl (154 mM)application to the pharyngolaryngeal regions. The water applicationproduced a reduction in the discharge of vasopressinergic cellsin the non-dehydrated condition, while there was no appreciablechange in the discharge of oxytocinergic cells after water application.The discharges in the vasopressinergic and oxytocinergic neuronswere unchanged after NaCl application. Because neural dischargein the vasopressinergic cell has been shown to be linked tovasopressin secretion, these findings suggest that pharyngolaryngealwater signals may actively modulate the fluid balance throughvasopressin.  相似文献   

14.
15.
Hypothalamic neurosecretory neurons transcribe, translate, store, and secrete a large number of chemical messengers. The neurons contain hypothalamic signal substances that regulate the secretion of anterior pituitary hormones as well as the neurohypophysial peptides vasopressin and oxytocin. In addition to the classical hypophysiotropic hormones, a large number of neuropeptides and classical transmitters of amine and amino acid nature are present in the same cells. This is particularly evident in the magnocellular neurons of the supraoptic and paraventricular nuclei, and in parvocellular neurons of the arcuate and paraventricular nuclei. The changes in gene expression induced by experimental manipulations and the colocalization chemical messengers in hypothalamic neurosecretory neurons and its possible significance is summarized in this review.  相似文献   

16.
Yumi Takemoto 《Amino acids》2013,44(3):1053-1060
The sulfur-containing non-essential amino acid l-cysteine injected into the cisterna magna of adult conscious rats produces an increase in blood pressure. The present study examined if the pressor response to l-cysteine is stereospecific and involves recruitment of hypothalamic vasopressinergic neurons and medullary noradrenergic A1 neurons. Intracisternally injected d-cysteine produced no cardiovascular changes, while l-cysteine produced hypertension and tachycardia in freely moving rats, indicating the stereospecific hemodynamic actions of l-cysteine via the brain. The double labeling immunohistochemistry combined with c-Fos detection as a marker of neuronal activation revealed significantly higher numbers of c-Fos-positive vasopressinergic neurons both in the supraoptic and paraventricular nuclei and tyrosine hydroxylase containing medullary A1 neurons, of l-cysteine-injected rats than those injected with d-cysteine as iso-osmotic control. The results indicate that the cardiovascular responses to intracisternal injection of l-cysteine in the conscious rat are stereospecific and include recruitment of hypothalamic vasopressinergic neurons both in the supraoptic and paraventricular nuclei, as well as of medullary A1 neurons. The findings may suggest a potential function of l-cysteine as an extracellular signal such as neuromodulators in central regulation of blood pressure.  相似文献   

17.
细胞凋亡在神经细胞的生理性和病理性死亡中起着重要作用。唯BH3域蛋白是Bcl-2家族中的一类仅含有BH3同源结构域的促凋亡分子,它们通过抑制Bcl-2抗凋亡成员的活性或激活Bax/Bak样促凋亡成员的活性来调节细胞凋亡。最近研究表明,唯BH3域蛋白在凋亡的启动及凋亡通路的沟通中发挥着极其重要的作用。  相似文献   

18.
19.
This study investigated the effects of exercise training in regulating inflammatory processes, endoplasmic reticulum stress, and apoptosis in hypothalamic neurons of obese mice. Swiss mice were distributed into three groups: Lean mice (Lean), sedentary animals fed a standard diet; obese mice (Obese), sedentary animals fed a high-fat diet (HFD); trained obese mice (T. Obese), animals fed with HFD and concurrently subjected to an endurance training protocol for 8 weeks. In the endurance training protocol, mice ran on a treadmill at 60% of peak workload for 1 hr, 5 days/week for 8 weeks. Twenty-four hours after the last exercise session, the euthanasia was performed. Western blot, quantitative real-time polymerase chain reaction, and terminal deoxynucleotide transferase biotin-dUTP nick end-labeling (TUNEL) techniques were used for the analysis of interest. The results show exercise training increased phosphorylation of leptin signaling pathway proteins (pJAK2/pSTAT3) and reduced the content of tumor necrosis factor α, toll-like receptor 4, suppressor of cytokine signaling 3, protein–tyrosine phosphatase 1B as well as the phosphorylation of IkB kinase in the hypothalamus of T. Obese animals. A reduction of macrophage activation and phosphorylation of eukaryotic initiation factor 2α, and protein kinase RNA-like endoplasmic reticulum kinase (PERK) were also observed in exercised animals. Furthermore, exercise decreased the expression of the proapoptotic protein (PARP1) and increased anti-inflammatory (IL-10) and antiapoptotic (Bcl2) proteins. Using the TUNEL technique, we observed that the exercised animals had lower DNA fragmentation. Finally, physical exercise preserved pro-opiomelanocortin messenger RNA content. In conclusion, exercise training was able to reorganize the control of the energy balance through anti-inflammatory and antiapoptotic responses in hypothalamic tissue of obese mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号