首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Determination of L1 retrotransposition kinetics in cultured cells   总被引:12,自引:3,他引:9       下载免费PDF全文
L1 retrotransposons are autonomous retroelements that are active in the human and mouse genomes. Previously, we developed a cultured cell assay that uses a neomycin phosphotransferase (neo) retrotransposition cassette to determine relative retrotransposition frequencies among various L1 elements. Here, we describe a new retrotransposition assay that uses an enhanced green fluorescent protein (EGFP) retrotransposition cassette to determine retrotransposition kinetics in cultured cells. We show that retrotransposition is not detected in cultured cells during the first 48 h post-transfection, but then proceeds at a continuous high rate for at least 16 days. We also determine the relative retrotransposition rates of two similar human L1 retrotransposons, L1RP and L1.3. L1RP retrotransposed in the EGFP assay at a rate of ~0.5% of transfected cells/day, ~3-fold higher than the rate measured for L1.3. We conclude that the new assay detects near real time retrotransposition in a single cell and is sufficiently sensitive to differentiate retrotransposition rates among similar L1 elements. The EGFP assay exhibits improved speed and accuracy compared to the previous assay when used to determine relative retrotransposition frequencies. Furthermore, the EGFP cassette has an expanded range of experimental applications.  相似文献   

3.
Aging is associated with a reduction in the DNA repair capacity under oxidative stress. However, whether the DNA damage and repair capacity can be a biomarker of aging remains controversial. In this study, we demonstrated two cause-and-effect relationships, the one is between the DNA damage and repair capacity and the cellular age, another is between DNA damage and repair capacity and the level of oxidative stress in human embryonic lung fibroblasts (2BS) exposed to different doses of hydrogen peroxide (H2O2). To clarify the mechanisms of the age-related reduction in DNA damage and repair capacity, we preliminarily evaluated the expressions of six kinds of pivotal enzymes involved in the two classical DNA repair pathways. The DNA repair capacity was observed in human fibroblasts cells using the comet assay; the age-related DNA repair enzymes were selected by RT-PCR and then verified by Western blot in vitro. Results showed that the DNA repair capacity was negatively and linearly correlated with (i) cumulative population doubling (PD) levels only in the group of low concentration of hydrogen peroxide treatment, (ii) with the level of oxidative stress only in the group of young PD cells. The mRNA expression of DNA polymerase δ1 decreased substantially in senescent cells and showed negative linear-correlation with PD levels; the protein expression level was well consistent with the mRNA level. Taken together, DNA damage and repair capacity can be a biomarker of aging. Reduced expression of DNA polymerase δ1 may be responsible for the decrease of DNA repair capacity in senescent cells.  相似文献   

4.
Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.  相似文献   

5.
Genomic deletions created upon LINE-1 retrotransposition   总被引:23,自引:0,他引:23  
Gilbert N  Lutz-Prigge S  Moran JV 《Cell》2002,110(3):315-325
LINE-1 (L1) retrotransposition continues to impact the human genome, yet little is known about how L1 integrates into DNA. Here, we developed a plasmid-based rescue system and have used it to recover 37 new L1 retrotransposition events from cultured human cells. Sequencing of the insertions revealed the usual L1 structural hallmarks; however, in four instances, retrotransposition generated large target site deletions. Remarkably, three of those resulted in the formation of chimeric L1s, containing the 5' end of an endogenous L1 fused precisely to our engineered L1. Thus, our data demonstrate multiple pathways for L1 integration in cultured cells, and show that L1 is not simply an insertional mutagen, but that its retrotransposition can result in significant deletions of genomic sequence.  相似文献   

6.
7.
Animal cells generate hydrogen peroxide as a byproduct of energy metabolism. In the presence of reduced metals H(2)O(2) can decompose to a highly reactive hydroxyl radical that attacks essentially all organic molecules, including DNA. We wished to determine if overexpression of catalase and/or the targeting of the enzyme to the nucleus could protect cells from oxidative stress and reduce the frequency of mutation. Wild-type human catalase, which localizes to peroxisomes, and a modified construct, which targets catalase to the nucleus, were overexpressed in a murine line of embryonic carcinoma cells (P19). Both constructs enhanced the resistance of the cells to hydrogen peroxide, but sensitized them to bleomycin. Overexpression of wild-type catalase protected cells against paraquat, while nuclear targeting sensitized them to this agent. Expression of neither construct significantly altered spontaneous mutant frequencies at the endogenous murine adenosine phosphoribosyl transferase (APRT) locus; however, nuclear-targeted catalase prevented an increase in mutant frequency after H(2)O(2) treatment. These results suggest that endogenous levels of hydrogen peroxide may not generate DNA damage in vivo, or that such damage may be efficiently repaired in murine embryonic carcinoma cells.  相似文献   

8.
Reactive oxygen species modify DNA, generating various DNA lesions including modified bases such as 8-oxoguanine (8-oxoG). These base-modified DNA lesions have been shown to trap DNA topoisomerase I (TOP1) into covalent cleavage complexes. In this study, we have investigated the role of TOP1 in hydrogen peroxide toxicity. We showed that ectopic expression of TOP1 in Saccharomyces cerevisiae conferred sensitivity to hydrogen peroxide, and this sensitivity was dependent on RAD9 checkpoint function. Moreover, in the mammalian cell culture system, hydrogen peroxide-induced growth inhibition and apoptosis were shown to be partly TOP1-dependent as evidenced by a specific increase in resistance to hydrogen peroxide in TOP1-deficient P388/CPT45 murine leukemia cells as compared with their TOP1-proficient parental cell line P388. In addition, hydrogen peroxide was shown to induce TOP1-DNA cross-links. These results support a model in which hydrogen peroxide promotes the trapping of TOP1 on oxidative DNA lesions to form TOP1-DNA cleavage complexes that contribute to hydrogen peroxide toxicity.  相似文献   

9.
Ryu B  Himaya SW  Qian ZJ  Lee SH  Kim SK 《Peptides》2011,32(4):639-647
Two new peptides derived from seaweed pipefish Syngnathus schlegeli, SPP-1(QLGNLGV) and SPP-2 (SVMPVVA) were assessed for their ability to prevent hydrogen peroxide induced oxidative stress in human dermal fibroblasts (HDFs). Both peptides showed a significant hydroxyl radical scavenging activity when tested by ESR technique. And also the peptides effectively suppressed the hydrogen peroxide induced ROS production and DNA damage in HDF cells. Furthermore the two peptides increase the protein expression levels of intracellular antioxidant enzymes SOD1, GSH and catalase in hydrogen peroxide stressed HDF cells. At the cellular signaling level, SPPs block the NF-κB activation which may lead to the reduction of oxidative stress mediated damage of HDF cells. These finding indicate the potential antioxidant effects of SPPs as response to H2O2 stimulation.  相似文献   

10.
BRCA1 and BRCA2 mutation carriers are predisposed to develop breast and ovarian cancers, but the reasons for this tissue specificity are unknown. Breast epithelial cells are known to contain elevated levels of oxidative DNA damage, triggered by hormonally driven growth and its effect on cell metabolism. BRCA1- or BRCA2-deficient cells were found to be more sensitive to oxidative stress, modeled by treatment with patho-physiologic concentrations of hydrogen peroxide. Hydrogen peroxide exposure leads to oxidative DNA damage induced DNA double strand breaks (DSB) in BRCA-deficient cells causing them to accumulate in S-phase. In addition, after hydrogen peroxide treatment, BRCA deficient cells showed impaired Rad51 foci which are dependent on an intact BRCA1–BRCA2 pathway. These DSB resulted in an increase in chromatid-type aberrations, which are characteristic for BRCA1 and BRCA2-deficient cells. The most common result of oxidative DNA damage induced processing of S-phase DSB is an interstitial chromatid deletion, but insertions and exchanges were also seen in BRCA deficient cells. Thus, BRCA1 and BRCA2 are essential for the repair of oxidative DNA damage repair intermediates that persist into S-phase and produce DSB. The implication is that oxidative stress plays a role in the etiology of hereditary breast cancer.  相似文献   

11.
The effect of a short-time (1 h) oxidative stress on multidrug resistance (MDR) of murine leukemic P388VR cells has been investigated. We studied the production of reactive oxygen species (ROS) in cells depending on the composition of medium and the concentration of cells and hydrogen peroxide, as well as the effect of hydrogen peroxide on MDR of cells. MDR was determined from the transport of calcein acetoxymethyl ester out of the cells and from a change in cell sensitivity to vincristine. The amount of ROS arising in cells was determined using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA). It was shown that the rate of ROS formation in cells decreases after the addition of serum to the medium and with an increase of the cell number. By the action of hydrogen peroxide, the amount of ROS increases directly with its concentration. Oxidative stress generated by 30–300 μM hydrogen peroxide decreases the MDR of the cells. The effect of hydrogen peroxide increases with the treatment duration and concentration of hydrogen peroxide. MDR determined by the criterion of the efflux of calcein ester from cells is completely suppressed after 1-h exposure to 300 μM hydrogen peroxide. At a concentration of hydrogen peroxide of 60 μM and treatment duration of 1 h, the sensitivity of P388VR cells to vincristine increases to reach the sensitivity of the wild-type P388 cells. Rapid (about 1 h) suppression of MDR is caused by inhibition of the activity of transport proteins. MDR decrease induced by oxidative stress can be used in therapy of tumors resistant to anticancer drugs.  相似文献   

12.
13.
Methionine sulfoxide reductase A (MsrA), a member of the Msr gene family, can reduce methionine sulfoxide residues in proteins formed by oxidation of methionine by reactive oxygen species (ROS). Msr is an important protein repair system which can also function to scavenge ROS. Our studies have confirmed the expression of MsrA in mouse embryonic stem cells (ESCs) in culture conditions. A cytosol‐located and mitochondria‐enriched expression pattern has been observed in these cells. To confirm the protective function of MsrA in ESCs against oxidative stress, a siRNA approach has been used to knockdown MsrA expression in ES cells which showed less resistance than control cells to hydrogen peroxide treatment. Overexpression of MsrA gene products in ES cells showed improved survivability of these cells to hydrogen peroxide treatment. Our results indicate that MsrA plays an important role in cellular defenses against oxidative stress in ESCs. Msr genes may provide a new target in stem cells to increase their survivability during the therapeutic applications. J. Cell. Biochem. 111: 94–103, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Moran JV 《Genetica》1999,107(1-3):39-51
Long Interspersed Nuclear Elements (L1s or LINEs) are the most abundant retrotransposons in the human genome, and they comprise approximately 17% of DNA. L1 retrotransposition can be mutagenic, and deleterious insertions both in the germ-line and in somatic cells have resulted in disease. Recently, an assay was developed to monitor L1 retrotransposition in cultured human cells. This assay, for the first time, now allows for a systematic study of L1 retrotransposition at the molecular level. Here, I will review progress made in L1 biology during the past three years. In general, I will limit the discussion to studies conducted on human L1s. However, interesting parallels to rodent L1s and other non-LTR retrotransposons also will be discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Members of the APOBEC3 (A3) family of cytidine deaminase enzymes act as host defense mechanisms limiting both infections by exogenous retroviruses and mobilization of endogenous retrotransposons. Previous studies revealed that the overexpression of some A3 proteins could restrict engineered human Long INterspersed Element-1 (LINE-1 or L1) retrotransposition in HeLa cells. However, whether endogenous A3 proteins play a role in restricting L1 retrotransposition remains largely unexplored. Here, we show that HeLa cells express endogenous A3B and A3C, whereas human embryonic stem cells (hESCs) express A3B, A3C, A3DE, A3F, and A3G. To study the relative contribution of endogenous A3 proteins in restricting L1 retrotransposition, we first generated small hairpin RNAs (shRNAs) to suppress endogenous A3 mRNA expression, and then assessed L1 mobility using a cell-based L1 retrotransposition assay. We demonstrate that in both HeLa and hESCs, shRNA-based knockdown of A3B promotes a ~2-3.7-fold increase in the retrotransposition efficiency of an engineered human L1. Knockdown of the other A3s produced no significant increase in L1 activity. Thus, A3B appears to restrict engineered L1 retrotransposition in a broad range of cell types, including pluripotent cells.  相似文献   

16.
17.
Dermal fibroblasts from long-lived Snell dwarf mice can withstand a variety of oxidative and non-oxidative stressors compared to normal littermate controls. Here, we report differences in the levels and activities of intracellular antioxidant and DNA repair enzymes between normal and Snell dwarf mice fibroblasts cultured under a variety of conditions, including: 3% and 20% ambient O2; the presence and absence of serum; and the addition of an exogenous oxidative stress. The only significant difference between normal and dwarf cells cultured in complete medium, at 20% O2, was an approximately 40% elevation of glutathione peroxidase (GPx) activity in the mutant cells. Serum deprivation elicited increases in GPx in both genotypes, but these activities remained higher in dwarf mouse cells. Dwarf mouse cells deprived of serum and challenged with exposure to paraquat or hydrogen peroxide showed a generally greater upregulation of catalase and DNA base excision repair enzymes. As these toxins can interact with mitochondria to increase mitochondrial ROS production, we explored whether there were differences in mitochondrial metabolism between normal and dwarf mouse cells. However, neither mitochondrial content nor the apparent mitochondrial membrane potential differed between genotypes. Overall, the results suggest that superior hydrogen peroxide metabolism and a marginally greater DNA base excision repair capacity contribute to the stress resistance phenotype of Snell dwarf mouse fibroblasts.  相似文献   

18.
Long interspersed nuclear elements (LINEs or L1s) comprise approximately 17% of human DNA; however, only about 60 of the approximately 400,000 L1s are mobile. Using a retrotransposition assay in cultured human cells, we demonstrate that L1-encoded proteins predominantly mobilize the RNA that encodes them. At much lower levels, L1-encoded proteins can act in trans to promote retrotransposition of mutant L1s and other cellular mRNAs, creating processed pseudogenes. Mutant L1 RNAs are mobilized at 0.2 to 0.9% of the retrotransposition frequency of wild-type L1s, whereas cellular RNAs are mobilized at much lower frequencies (ca. 0.01 to 0.05% of wild-type levels). Thus, we conclude that L1-encoded proteins demonstrate a profound cis preference for their encoding RNA. This mechanism could enable L1 to remain retrotransposition competent in the presence of the overwhelming number of nonfunctional L1s present in human DNA.  相似文献   

19.
20.
Cigarette smoke can cause DNA single strand breaks in cultured human lung cells (T. Nakayama et al., Nature, 314 (1985) 462-464) but the mechanisms behind this DNA damage have not been clearly elucidated. In the present study we have investigated the possibility that one of the major constituents in cigarette smoke, hydroquinone, may be important for mediating smoke-induced DNA damage in the human epithelial lung cell line, A 549, and the mechanisms behind this damage. Cells were exposed to cigarette smoke, hydrogen peroxide, or hydroquinone, in the absence and presence of different inhibitors, and the resulting DNA damage was assessed either as DNA single strand break formation or formation of the oxidative DNA adduct, 8-hydroxydeoxyguanosine. It was found that (i) exposure to cigarette smoke, hydrogen peroxide or hydroquinone causes a rapid decrease in the intracellular thiol level and a considerable DNA single strand break formation, (ii) the formation of DNA single strand breaks in cells exposed to cigarette smoke is inhibited by catalase, dimethylthiourea, and o-phenantroline, suggesting that hydroxyl radicals generated from iron-catalyzed hydrogen peroxide dissociation are involved in the DNA damage, (iii) hydroquinone causes considerable DNA strand break formation that is blocked by aurintricarboxylic acid, an inhibitor of endonuclease activation, and by BAPTA, an intracellular calcium chelator, (iv) addition of hydroquinone to a smoke condensate greatly enhances its ability to cause DNA single strand breaks, and (v) smoke, but not hydroquinone, causes formation of 8-hydroxydeoxyguanosine, a DNA damage product induced by the action of hydroxyl radicals on the DNA base, deoxyguanosine. These findings suggest that the ability of cigarette smoke to cause DNA single strand breaks in cultured lung cells is due to mechanisms involving hydroxyl radical attack on DNA and endonuclease activation. They also suggest that hydroquinone is an important contributor to the DNA damaging effect of cigarette smoke on human lung cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号