首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
为筛选红掌(Anthurium andraeanumLinden)中稳定表达、可用于佛焰苞中实时荧光定量PCR分析(qRT-PCR)的内参基因,对5个组成型表达基因EF1-a、UBQ7、ACTB、GADPH、His3进行表达稳定性分析,并利用所筛选的内参基因研究红掌的二氢黄酮醇还原酶基因(dfr)的表达水平。结果表明,5种内参基因在不同品种间的表达稳定性不同。据内参基因标准化因子的配对差异分析(Vn/n+1),判定内参基因的最适数目为2,ACTB和UBQ7在红掌不同品种及佛焰苞发育不同阶段中表达均稳定,是理想的内参基因。dfr在不同品种的佛焰苞及佛焰苞发育过程中均有表达,且dfr表达水平的变化趋势一致,因此,所选内参基因是合适的。  相似文献   

5.
6.
Lactobacillus casei Zhang, a potential probiotic strain isolated from homemade koumiss in Inner Mongolia of China, has been sequenced and deposited in GenBank. Real-time quantitative PCR is one of the most widely used methods to study related gene expression levels of Lactobacillus casei Zhang. For accurate and reliable gene expression analysis, normalization of gene expression data using one or more appropriate reference genes is essential. We used three statistical methods (geNorm, NormFinder, and BestKeeper) to evaluate the expression levels of five candidate reference genes (GAPD, gyrB, LDH, 16s rRNA, and recA) under different culture conditions and different growth phases to find a suitable housekeeping gene which can be used as internal standard. The results showed that the best reference gene was GAPD, and a set of two genes, GAPD and gyrB (which were the most stable reference genes), is recommended for normalization of real-time quantitative PCR experiments under all the different experimental conditions tested. The systematic validation of candidate reference genes is important for obtaining reliable analysis results of real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang.  相似文献   

7.
The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (−8, −6, −4, −2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.  相似文献   

8.
This study was aimed to test a panel of six housekeeping genes (GAPDH, HPRT1, POLR2A, RPLP0, ACTB, and H3F) so as to identify and validate the most suitable reference genes for expression studies in astrocytomas. GAPDH was the most stable and HPRT1 was the least stable reference gene. The effect of reference gene selection on quantitative real-time polymerase chain reaction data interpretation was demonstrated, normalizing the expression data of a selected gene of interest. Thus, GAPDH may be recommended for data normalization in gene expression studies in astrocytomas. Nevertheless, a preliminary validation of reference gene stability is required prior to every study.  相似文献   

9.
10.
11.
In dairy animals, gene expression analysis has become increasing key to understand the biological processes occurring in mammary gland development that shape future milk potential. Selecting high-stability reference genes is crucial to interpret real-time qPCR data. This study investigated the expression stability of five top-ranked candidate reference genes in the goat mammary gland through three assays comparing different experimental conditions (physiological states, sample types and experimental treatments). The expression stability of genes including β-actin, glyceraldehyde-3-phosphate dehydrogenase, 18S rRNA, cyclophilin A and ribosomal protein large P0 was analyzed. Normalization for each experimental condition expression data revealed a different reference gene. Nevertheless, in our various assays, genes encoding for ribosomal proteins, 18S rRNA and RPLP0 presented the best expression stability. This result has been confirmed using a combined analysis of stability on the three assays. All genes showed the same distribution within and among the three assays and a different distribution between Ct variability and GeNorm normalization. In addition, the application on Catenin B1 expression using an inappropriate reference gene confirmed erroneous variations in interpretation. To conclude, there is no single ideal reference gene for caprine mammary gland studies and we recommend using a panel of top-ranked reference genes, including RPLP0, at the beginning of each experiment to validate the most stable(s) gene(s).  相似文献   

12.
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.  相似文献   

13.
14.
Differential expression of genes is crucial to embryogenesis. The analysis of gene expression requires appropriate references that should be minimally regulated during the embryonic development. To select the most stable genes for gene normalization, the expression profiles of eight commonly used reference genes (ACTB, GAPDH, rpL17, α-Tub, EF1-α, UbcE, B2M, and 18S rRNA) were examined during Japanese flounder (Paralichthys olivaceus) embryonic development using quantitative real-time polymerase chain reaction. It was found that all seven mRNA genes appeared to be developmentally regulated and exhibited significant variation of expression. However, further analyses revealed the stage-specific expression stability. Hence when normalization using these mRNA genes, the differential and stage-related expression should be considered. 18S rRNA gene, on the other hand, showed the most stable expression and could be recommended as a suitable reference gene during all embryonic developmental stages in P. olivaceus. In summary, our results provided not only the appropriate reference gene for embryonic development research in P. olivaceus, but also possible guidance to reference gene selection for embryonic gene expression analyses in other fish species.  相似文献   

15.
Oxidative stress-induced dysfunction in trabecular meshwork (TM) cells is considered a major alteration that can lead to glaucoma. Hydrogen peroxide (H2O2) is the most widely used agent for inducing oxidation in TM cells in vitro. Quantitative real-time PCR (qPCR) is an important method for studying alterations in gene expression, and suitable (i.e. invariant) reference genes must be defined to normalize expression levels. In this study, eight common reference genes, i.e. PRS18, ACTB, B2M, GAPDH, PPIA, HPRT1, YWHAZ, and TBP, were evaluated for use in studies of H2O2-induced dysfunction in TM cells. Three established algorithms, geNorm, NormFinder, and BestKeeper, were used to analyze the reference genes. ACTB expression was least affected by H2O2 treatment in TM cells, and the combination of PPIA and HPRT1 was the most suitable gene pair for normalization. GAPDH and TBP were the most unstable genes and accordingly should be avoided in experiments with TM cells. These results provide a foundation for analyses of the mechanisms underlying glaucoma, and emphasize the importance of selecting suitable reference genes for qPCR studies.  相似文献   

16.
17.
Comparing gene expression patterns in the endometrium on gestational day 12 (GD12) between Erhualian (ER) and Landrace × Large White (LL) pigs is helpful to understand the biological mechanisms of fecundity. Selecting genes that have stable expression levels as the internal standards in a comparative study is essential for identifying real gene-specific variation by quantitative RT-PCR (qRT-PCR). Five genes expressed in sow endometria on GD12 were evaluated for their suitability as internal control for relative quantification by qRT-PCR. These genes were beta-actin (ACTB), beta-2-microglobulin (B2M), phosphoglycerate kinase 1 (PGK1), RNA polymerase II polypeptide G (RPG), and ribosomal protein S20 (RPS20), which represent different functional classes. Our results indicated that ACTB, B2M, and PGK1 were not suitable as internal standards for normalization because of their huge variability between the two breeds. RPS20 and RPG were most stable, and the former is recommended to serve as the internal standard when the use of multiple housekeeping genes is unpractical.  相似文献   

18.
The Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae), is an important pest of sheep in Australia and other parts of the world. However, the paucity of information on many fundamental molecular aspects of this species limits the ability to exploit functional genomics techniques for the discovery of new drug targets for its control. The present study aimed to facilitate gene expression studies in this species by identifying the most suitable reference genes for normalization of mRNA expression data. Quantitative real‐time polymerase chain reaction (PCR) was performed with 11 genes across RNA samples from eggs, L1, L3, pupae and adult life stages, and two normalization programs, Normfinder and geNorm, were then applied to the data. The results showed an ideal set of genes (18S rRNA, 28S rRNA, GST1, β‐tubulin and RPLPO) for data normalization across all life stages. The most suitable reference genes for studies within specific life stages were also identified. GAPDH was shown to be a poor reference gene. The reference gene recommendations in this study will be of use to laboratories investigating gene expression in L. cuprina and related blowfly species  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号