首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
RNA-mediated gene silencing has been demonstrated in plants, animals, and more recently in filamentous fungi. Here, we report high frequency, RNA-mediated gene silencing in the apple scab fungus, Venturia inaequalis. The green fluorescent protein (GFP) transgene was silenced in a GFP-expressing transformant. An endogenous gene, trihydroxynaphthalene reductase (THN), involved in melanin biosynthesis, was also silenced. Silencing of these two genes resulted in obvious phenotypes in vitro. High frequency gene silencing was achieved using hairpin constructs for the GFP or the THN genes transferred by Agrobacterium (71 and 61%, respectively). THN-silenced transformants exhibited a distinctive light brown phenotype and maintained the ability to infect apple. Of significance was the simultaneous silencing of the two genes from a single chimeric, inverted repeat hairpin construct. Silencing of both genes with this construct occurred at a frequency of 51% of all the transformants. All 125 colonies silenced for the GFP gene were also silenced for THN. As THN and GFP silenced transformants have readily detectable phenotypes, the genes have utility as markers for gene silencing. Simultaneous, multiple gene silencing, utilising such marker genes, will enable the development of high through-put screening for functional genomics. This chimeric technology will be particularly valuable when linked with silenced genes that have no obvious phenotype in vitro.  相似文献   

2.
A green fluorescent protein (GFP) transgene under the control of the 35S cauliflower mosaic virus (CaMV) promoter was introduced by Agrobacterium-mediated transformation into Nicotiana benthamiana to generate fourteen transgenic lines. Homozygous lines that contained one or two copies of the transgene showed great variation of GFP expression under ultraviolet (UV) light, which allowed classification into three types of transgenic plants. Plants from more than half of the transgenic lines underwent systemic RNA silencing and produced short interfering RNA (siRNA) as young seedlings, while plants of the remaining lines developed, in a spontaneous manner, defined GFP-silenced zones on their leaves, mostly in the form of circular spots that expanded to about 4-7 mm in size. In some of the latter lines, the GFP-silenced spots remained stable, but no systemic silencing occurred. Here we characterize this phenomenon, which we term spontaneous short-range silencing (SSRS). Biochemical analysis of silenced spot tissue did not reveal detectable levels of siRNA. However, agro-infiltration with the suppressor proteins P19 of cymbidium ring spot virus (CymRSV), HC-Pro of tobacco etch virus (TEV), and crosses to a P19 transgenic line, nevertheless suggests that low concentrations of siRNA may have a functional role in the locally silenced zone. We propose that small alterations in the steady-state concentration of siRNAs and their cognate mRNA are decisive with regard to whether silencing remains local or spreads in a systemic manner.  相似文献   

3.
4.
5.
6.
7.
8.
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so‐called virus‐induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5′ end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3′ end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3′ end, and an overall increase in CG methylation in the 5′ end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.  相似文献   

9.
10.
张勇  杨宝玉  陈士云 《遗传学报》2006,33(12):1105-1111
分析了来源于农杆菌介导的4个独立的大豆转化系的后代遗传特性。分别采用种子切片GUS染色方法和除草剂涂抹以及喷洒方法检测gus报告基因和抗除草剂bar基因在后代的表达。其中3个转化系T1代gus基因和bar基因能够以孟德尔方式3:1连锁遗传,说明这2个基因整合在大豆基因组的同一位点。这3个转化系在T2代获得了纯合的转化系,并能够稳定遗传至T5代。有一个转化系在T1代GUS和抗除草剂检测都为阴性,但通过Southern杂交证明转基因存在于后代基因组,显示发生了转基因沉默。为了证明转基因沉默是转录水平还是转录后水平,T1代植物叶片接种大豆花叶病毒(SMV)并不能抑制转基因沉默,说明该转化系基因沉默可能不是发生在转录后水平。  相似文献   

11.
12.
13.
14.
15.
16.
17.
Insertion of foreign DNA into plant genomes frequently results in the recovery of transgenic plants with silenced transgenes. To investigate to what extent regeneration under selective conditions limits the recovery of transgenic plants showing gene silencing in woody species, Mexican lime [ Citrus aurantifolia (Christm.) Swing.] plants were transformed with the p25 coat protein gene of Citrus tristeza virus (CTV) with or without selection for nptII and uidA. Strikingly, more than 30% of the transgenic limes regenerated under non-selective conditions had silenced transgenes, and in all cases silencing affected all the three transgenes incorporated. These results indicate that the frequency of transgene silencing may be greatly underestimated when the rate of silencing is estimated from the number of regenerants obtained under selective conditions. To our knowledge, this is the first report in which the frequency of gene silencing after transformation has been quantified. When the integration pattern of T-DNA was analyzed in silenced and non-silenced lines, it was observed that inverted repeats as well as direct repeats and even single integrations were able to trigger gene silencing. Gene silencing has often been associated with the insertion of DNA sequences as inverted repeats. Interestingly, here, direct repeats and single-copy insertions were found in both silenced and non-silenced lines, suggesting that the presence of inverted-repeat T-DNAs and the subsequent formation of dsRNAs triggering gene silencing cannot account for all silencing events.  相似文献   

18.
In recent years, RNA interference has been exploited as a tool for investigating gene function in plants. We tested the potential of double-stranded RNA interference technology for silencing a transgene in the actinorhizal tree Allocasuarina verticillata. The approach was undertaken using stably transformed shoots expressing the beta-glucuronidase (GUS) gene under the control of the constitutive promoter 35S; the shoots were further transformed with the Agrobacterium rhizogenes A4RS containing hairpin RNA (hpRNA) directed toward the GUS gene, and driven by the 35S promoter. The silencing and control vectors contained the reporter gene of the green fluorescent protein (GFP), thus allowing a screening of GUS-silenced composite plantlets for autofluorescence. With this rapid procedure, histochemical data established that the reporter gene was strongly silenced in both fluorescent roots and actinorhizal nodules. Fluorometric data further established that the level of GUS silencing was usually greater than 90% in the hairy roots containing the hairpin GUS sequences. We found that the silencing process of the reporter gene did not spread to the aerial part of the composite A. verticillata plants. Real-time quantitative polymerase chain reaction showed that GUS mRNAs were substantially reduced in roots and, thereby, confirmed the knock-down of the GUS transgene in the GFP(+) hairy roots. The approach described here will provide a versatile tool for the rapid assessment of symbiotically related host genes in actinorhizal plants of the Casuarinaceae family.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号