首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hasson U  Harel M  Levy I  Malach R 《Neuron》2003,37(6):1027-1041
We have combined functional maps of retinotopy (eccentricity and meridian mapping), object category, and motion in a group of subjects to explore the large-scale topography of higher-order object areas. Our results reveal seven consistent category-related entities situated in the occipito-temporal cortex adjoining early visual areas. These include two face-related regions, three object-related regions, and two building-related regions. Interestingly, this complex category-related pattern is organized in a large-scale dorso-ventral mirror symmetry of object category. Furthermore, correlating this pattern to the map of visual field eccentricity, we found that the entire network of areas could be related to a single and unified eccentricity map. We hypothesize that this large-scale organization points to a possible development of high-order object areas through extension and specialization of a single proto-representation.  相似文献   

2.
The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic “theta phase precession” observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object–place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object–place associations in the hierarchical network formed by theta phase precession. The results show that multiple object–place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object–place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object–place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.  相似文献   

3.
We present a network model of visual map development in layer 4 of primary visual cortex. Our model comprises excitatory and inhibitory spiking neurons. The input to the network consists of correlated spike trains to mimick the activity of neurons in the lateral geniculate nucleus (LGN). An activity-driven Hebbian learning mechanism governs the development of both the network's lateral connectivity and feedforward projections from LGN to cortex. Plasticity of inhibitory synapses has been included into the model so as to control overall cortical activity. Even without feedforward input, Hebbian modification of the excitatory lateral connections can lead to the development of an intracortical orientation map. We have found that such an intracortical map can guide the development of feedforward connections from LGN to cortical simple cells so that the structure of the final feedforward orientation map is predetermined by the intracortical map. In a scenario in which left- and right-eye geniculocortical inputs develop sequentially one after the other, the resulting maps are therefore very similar, provided the intracortical connectivity remains unaltered. This may explain the outcome of so-called reverse lid-suture experiments, where animals are reared so that both eyes never receive input at the same time, but the orientation maps measured separately for the two eyes are nevertheless nearly identical. Received: 20 December 1999 / Accepted in revised form: 9 June 2000  相似文献   

4.
Yu H  Farley BJ  Jin DZ  Sur M 《Neuron》2005,47(2):267-280
Whether general principles can explain the layouts of cortical maps remains unresolved. In primary visual cortex of ferret, the relationships between the maps of visual space and response features are predicted by a "dimension-reduction" model. The representation of visual space is anisotropic, with the elevation and azimuth axes having different magnification. This anisotropy is reflected in the orientation, ocular dominance, and spatial frequency domains, which are elongated such that their directions of rapid change, or high-gradient axes, are orthogonal to the high-gradient axis of the visual map. The feature maps are also strongly interdependent-their high-gradient regions avoid one another and intersect orthogonally where essential, so that overlap is minimized. Our results demonstrate a clear influence of the visual map on each feature map. In turn, the local representation of visual space is smooth, as predicted when many features are mapped within a cortical area.  相似文献   

5.
《Journal of Physiology》2013,107(6):510-516
Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP).  相似文献   

6.
Buenemann M  Lenz P 《PloS one》2010,5(11):e13806
Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli.  相似文献   

7.
In this paper we propose a novel saliency-based computational model for visual attention. This model processes both top-down (goal directed) and bottom-up information. Processing in the top-down channel creates the so called skin conspicuity map and emulates the visual search for human faces performed by humans. This is clearly a goal directed task but is generic enough to be context independent. Processing in the bottom-up information channel follows the principles set by Itti et al. but it deviates from them by computing the orientation, intensity and color conspicuity maps within a unified multi-resolution framework based on wavelet subband analysis. In particular, we apply a wavelet based approach for efficient computation of the topographic feature maps. Given that wavelets and multiresolution theory are naturally connected the usage of wavelet decomposition for mimicking the center surround process in humans is an obvious choice. However, our implementation goes further. We utilize the wavelet decomposition for inline computation of the features (such as orientation angles) that are used to create the topographic feature maps. The bottom-up topographic feature maps and the top-down skin conspicuity map are then combined through a sigmoid function to produce the final saliency map. A prototype of the proposed model was realized through the TMDSDMK642-0E DSP platform as an embedded system allowing real-time operation. For evaluation purposes, in terms of perceived visual quality and video compression improvement, a ROI-based video compression setup was followed. Extended experiments concerning both MPEG-1 as well as low bit-rate MPEG-4 video encoding were conducted showing significant improvement in video compression efficiency without perceived deterioration in visual quality.  相似文献   

8.
To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information (“spatial chunks”). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid''s usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.  相似文献   

9.
In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey.  相似文献   

10.
Cerebral lateralization refers to the poorly understood fact that some functions are better controlled by one side of the brain than the other (e.g. handedness, language). Of particular concern here are the asymmetries apparent in cortical topographic maps that can be demonstrated electrophysiologically in mirror-image locations of the cerebral cortex. In spite of great interest in issues surrounding cerebral lateralization, methods for measuring the degree of organization and asymmetry in cortical maps are currently quite limited. In this paper, several measures are developed and used to assess the degree of organization, lateralization, and mirror symmetry in topographic map formation. These measures correct for large constant displacements as well as curving of maps. The behavior of the measures is tested on several topographic maps obtained by self-organization of an initially random artificial neural network model of a bihemispheric brain, and the results are compared with subjective assessments made by humans.  相似文献   

11.
Harding G  Harris JM  Bloj M 《PloS one》2012,7(4):e35950
The luminance and colour gradients across an image are the result of complex interactions between object shape, material and illumination. Using such variations to infer object shape or surface colour is therefore a difficult problem for the visual system. We know that changes to the shape of an object can affect its perceived colour, and that shading gradients confer a sense of shape. Here we investigate if the visual system is able to effectively utilise these gradients as a cue to shape perception, even when additional cues are not available. We tested shape perception of a folded card object that contained illumination gradients in the form of shading and more subtle effects such as inter-reflections. Our results suggest that observers are able to use the gradients to make consistent shape judgements. In order to do this, observers must be given the opportunity to learn suitable assumptions about the lighting and scene. Using a variety of different training conditions, we demonstrate that learning can occur quickly and requires only coarse information. We also establish that learning does not deliver a trivial mapping between gradient and shape; rather learning leads to the acquisition of assumptions about lighting and scene parameters that subsequently allow for gradients to be used as a shape cue. The perceived shape is shown to be consistent for convex and concave versions of the object that exhibit very different shading, and also similar to that delivered by outline, a largely unrelated cue to shape. Overall our results indicate that, although gradients are less reliable than some other cues, the relationship between gradients and shape can be quickly assessed and the gradients therefore used effectively as a visual shape cue.  相似文献   

12.
We present a functional model of form pathway in visual cortex based on predictive coding scheme, in which the prediction is compared with feedforward signals filtered by two kinds of spatial resolution maps, broad and fine resolution map. We propose here the functional role of the prediction and of the two kinds of resolution maps in perception of object form in visual system. The prediction is represented based on memory of dynamical attractors in temporal cortex, categorized by an elemental figure in posterior temporal cortex. The prediction is generated by the feedforward signals of main neurons in broad resolution maps of V(1) and V(4), and then is compared with the feedforward signals of main neurons in fine resolution map of V(1) and V(4).  相似文献   

13.
Development of continuous and discrete neural maps   总被引:3,自引:0,他引:3  
Luo L  Flanagan JG 《Neuron》2007,56(2):284-300
Two qualitatively different kinds of neural map have been described: continuous maps exemplified by the visual retinotopic map, and discrete maps exemplified by the olfactory glomerular map. Here, we review developmental mechanisms of retinotopic and olfactory glomerular mapping and discuss underlying commonalities that have emerged from recent studies. These include the use of molecular gradients, axon-axon interactions, and the interplay between labeling molecules and neuronal activity in establishing these maps. Since visual retinotopic and olfactory glomerular maps represent two ends of a continuum that includes many other types of neural map in between, these emerging general principles may be widely applicable to map formation throughout the nervous system.  相似文献   

14.
I present a novel analysis of abnormal retinocollicular maps in mice in which the distribution of EphA receptors over the retina has been modified by knockin and/or knockout of these receptor types. My analysis shows that in all these cases, whereas the maps themselves are discontinuous, the graded distribution of EphA over the nasotemporal axis of the retina is recreated within the pattern of axonal terminations across rostrocaudal colliculus. This suggests that the guiding principle behind the formation of ordered maps of nerve connections between vertebrate retina and superior colliculus, or optic tectum, is that axons carrying similar amounts of Eph receptor terminate near to one another on the target structure. I show how the previously proposed marker induction model embodies this principle and predicts these results. I then describe a new version of the model in which the properties of the markers, or labels, are based on those of the Eph receptors and their associated ligands, the ephrins. I present new simulation results, showing the development of maps between two-dimensional structures, exploring the role of counter-gradients of labels across the target and confirming that the model reproduces the retinocollicular maps found in EphA knockin/knockout mice. I predict that abnormal distributions of label within the retina lead to abnormal distributions of label over the target, so that in each of the types of knockin/knockout mice analysed, there will be a different distribution of labels over the target structure. This mechanism could be responsible for the flexibility with which neurons reorganise their connections during development and the degree of precision in the final map. Activity-based mechanisms would play a role only at a later stage of development to remove the overlap between individual retinal projection fields, such as in the development of patterns of ocular dominance stripes.  相似文献   

15.
Heteroduplex analysis of mitochondrial DNA (mtDNA) from evolutionary closely related mammals (rat vs. mouse, man vs. monkey) are analyzed and compared to heteroduplex analysis of mt-DNA from more distantly related mammals (rat vs. man, rat vs. monkey, mouse vs. man, mouse vs. monkey and man vs. cow). Each analysis is transformed into a heteroduplex map and all maps are aligned to restriction enzyme maps and to genetic maps and where possible compared with the known sequence. We show that early evolutionary changes are seen mainly in URF2, URFA6L, URF6 and the D-loop region. The regions of rRNA, URF1, COI and COIII are generally very conserved regions but areas with some evolutionary activity can be localized. Heteroduplex analysis between distantly related species show much more heterology than do closely related species and the heteroduplex maps between all the distantly related species show a common pattern of heterology. Comparisons between the DNA sequence of mtDNA from man, cow and mouse and the equivalent heteroduplex maps show that base pair homologies higher than 73% are displayed as homologous regions. In the heteroduplex analysis of mtDNA's from more closely related species very few heterologies are displayed at 50% formamide but an increase in formamide concentration to 65-70% demonstrate also in these instances general heterologous regions.  相似文献   

16.
During regeneration of the optic nerve in goldfish, the ingrowing retinal fibers successfully seek out their correct places in the overall retinotopic projection on the tectum. Chemospecific cell-surface interactions appear to be sufficient to organize only a crude retinotopic map on the tectum during regeneration. Precise retinotopic ordering appears to be achieved via an activity-dependent stabilization of appropriate synapses and is based upon the correlated activity of neighboring ganglion cells of the same receptive-field type in the retina. Four treatments have been found to block the sharpening process: (a) blocking the activity of the ganglion cells with intraocular tetrodotoxin (TTX), (b) rearing in total darkness, (c) correlating the activation of all ganglion cells via stroboscopic illumination and (d) blocking retinotectal synaptic transmission with alpha-bungarotoxin (alphaBTX). These experiments support a role for correlated visually driven activity in sharpening the diffuse projection and suggest that this correlated activity interacts within the postsynaptic cells, probably through the summation of excitatory postsynaptic potentials (EPSPs). Other experiments support the concept that effective synapses are stabilized: a local postsynaptic block of transmission causes a local disruption in the retinotectal map. The changes that occur during this disruption suggest that each arbor can move to maximize its synaptic efficacy. In development, initial retinotectal projections are often diffuse and may undergo a similar activity-dependent sharpening. Indirect retinotectal maps, as well as auditory maps, appear to be brought into register with the direct retinotopic projections by promoting the convergence of contacts with correlated activity. A similar mechanism may drive both the formation of ocular dominance patches in fish tectum and kitten visual cortex and the segregation of different receptive-field types in the lateral geniculate nucleus. Activity-dependent synaptic stabilization may therefore be a general mechanism whereby the diffuse projections of early development are brought to the precise, mature level of organization.  相似文献   

17.
Neurons in the primary visual cortex are selective to orientation with various degrees of selectivity to the spatial phase, from high selectivity in simple cells to low selectivity in complex cells. Various computational models have suggested a possible link between the presence of phase invariant cells and the existence of orientation maps in higher mammals’ V1. These models, however, do not explain the emergence of complex cells in animals that do not show orientation maps. In this study, we build a theoretical model based on a convolutional network called Sparse Deep Predictive Coding (SDPC) and show that a single computational mechanism, pooling, allows the SDPC model to account for the emergence in V1 of complex cells with or without that of orientation maps, as observed in distinct species of mammals. In particular, we observed that pooling in the feature space is directly related to the orientation map formation while pooling in the retinotopic space is responsible for the emergence of a complex cells population. Introducing different forms of pooling in a predictive model of early visual processing as implemented in SDPC can therefore be viewed as a theoretical framework that explains the diversity of structural and functional phenomena observed in V1.  相似文献   

18.
Topologic maps at consecutive levels of sensory pathways indicate behaviorally relevant features of stimuli at increasing degrees of complexity. In the auditory system, except for tonotopic maps, the nature of represented features is unknown. In a model analogous to visual map formation we show that in the auditory midbrain, layers of neurons with preference to the same frequency (isofrequency planes) may hold maps of two basic, mutually orthogonal parameters--instantaneous amplitude and phase--of basilar membrane displacement at the cochlear location responding to that frequency. The proposed neural tuning to frequency, amplitude, and phase implies that sound is transformed into specific temporal trajectories of neural activation, with consequences for experimental design and interpretation of neural response behavior.  相似文献   

19.
The inhomogeneous distribution of the receptive fields of cortical neurons influences the cortical representation of the orientation of short lines seen in visual images. We construct a model of the response of populations of neurons in the human primary visual cortex by combining realistic response properties of individual neurons and cortical maps of orientation and location preferences. The encoding error, which characterizes the difference between the parameters of a visual stimulus and their cortical representation, is calculated using Fisher information as the square root of the variance of a statistically efficient estimator. The error of encoding orientation varies considerably with the location and orientation of the short line stimulus as modulated by the underlying orientation preference map. The average encoding error depends only weakly on the structure of the orientation preference map and is much smaller than the human error of estimating orientation measured psychophysically. From this comparison we conclude that the actual mechanism of orientation perception does not make efficient use of all the information available in the neuronal responses and that it is the decoding of visual information from neuronal responses that limits psychophysical performance. Action Editor: Terrence Sejnowski  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号