首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cells of immune system such as monocytes and macrophages are in first line defence against dangerous signals. In the present paper the recognition of Dectin 1 receptors and the modulation of Interleukin-10 (IL-10) and Tumor Necrosis Factor-alpha (TNF-alpha) cytokine production by Curdlan and Curdlan derivatives in peripheral blood mononuclear cells (PBMCs) were studied. The effect of Curdlan or Curdlan derivatives on the expression of Dectin 1 receptors in PBMCs was revealed by flow-cytometry and the levels of IL-10 and TNFalpha were measured by ELISA kit in supernatants of PBMCs cultured in presence or absence of Curdlan, Curdlan derivatives and LPS. Our results suggested that Curdlan and Curdlan derivatives were able to increase the expression of Dectin-1 receptors on monocyte cells. The combined treatment of Curdlan/Curdlan derivatives and Pam3Cys produced an increase of CD14+ cells possessing Dectin-1 receptors. We demonstrated that Curdlan (at 20 microg unique dose) up-regulated TNF-alpha production and down-regulated IL-10 production in PBMCs. Conversely, Palm CM/SP-Curdlan (20 microg unique dose) was able to down-regulate TNF-alpha production and to up-regulate IL-10 production in PBMCs. For instance, Palm CM/SP-Curdlan determined a 5 times decrease of TNF-alpha production than Curdlan. Regarding the effect of Palm CM/SP-Curdlan on IL-10 production in PBMCs, we noticed that the level of IL-10 was about 4 times greater than Curdlan activity. We observed that a combined treatment of Curdlan/Curdlan derivatives and LPS induced about 5 times decrease in TNF-alpha production in PBMCs. IL-10 production induced by Palm CM/SP-Curdlan and LPS was about 6 times greater than the combined effect of Curdlan and LPS. The treatment of PBMCs with SP-Curdlan alone affected neither TNF-alpha production nor IL-10 production. Our results are in accordance with other studies demonstrating that Dectin-1 and TLR2/TLR6 signaling combine to enhance the responses triggered by each receptor and the signaling pathway induced by Dectin-1 could mediate the production of pro-inflammatory cytokines.  相似文献   

2.
Treatment with sulfonamide antibiotics in HIV-infected patients is associated with a high incidence (> 40%) of adverse drug events, including severe hypersensitivity reactions. Sulfonamide reactive metabolites have been implicated in the pathogenesis of these adverse reactions. Sulfamethoxazole hydroxylamine (SMX-HA) induces lymphocyte toxicity and suppression of proliferation in vitro; the mechanism(s) of these immunomodulatory effects remain unknown. We investigated the cytotoxicity of SMX-HA via apoptosis on human peripheral blood mononuclear cells and purified cell subpopulations in vitro. CD19(+), CD4(+), and CD8(+) cells were isolated from human peripheral blood by positive selection of cell surface molecules by magnetic bead separation. SMX-HA induced significant CD8(+) cell death (67 +/- 7%) at 100 microM SMX-HA, with only minimal CD4(+) cell death (8 +/- 4%). No significant subpopulation toxicity was shown when incubated with parent drug (SMX). Flow cytometry measuring phosphatidylserine externalization 24 h after treatment with 100 microM and 400 microM SMX-HA revealed 14.1 +/- 0.7% and 25. 6 +/- 4.2% annexin-positive cells, respectively, compared to 3.7 +/- 1.2% in control PBMCs treated with 400 microM SMX. Internucleosomal DNA fragmentation was observed in quiescent and stimulated PBMCs 48 h after incubation with SMX-HA. Our data show that CD8(+) cells are highly susceptible to the toxic effects of SMX-HA through enhanced cell death by apoptosis.  相似文献   

3.
In a previous study, we reported that cicaprost, a stable prostacyclin analogue can inhibit the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) from activated human peripheral mononuclear blood cells (PBMCs). Since interleukin (IL-4) and IL-13 have been shown to inhibit the release of cytokines from PBMCs we tested the hypothesis that prostacyclin in combination with IL-4 or IL-13 can act synergistically to modulate the release of IL-10, generally associated with anti-inflammatory properties, and the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-alpha). For this purpose, PBMCs were isolated over Ficoll, stimulated with lipopolysaccharide (LPS) and incubated in the presence of cicaprost, IL-4 or IL-13. There was a significant reduction in TNF-alpha as well as IL-10 secretion from LPS-stimulated PBMCs following incubation with IL-4 or IL-13. In contrast, cicaprost reduced the secretion of TNF-alpha but led to a slight enhancement of IL-10 release from PBMCs. When LPS-activated PBMCs were incubated in the presence of cicaprost and IL-4 or IL-13 there was a selective, synergistic inhibition of the TNF-alpha release which was not observed for IL-10. Thus, our data suggest that prostacyclin can synergize with cytokines to selectively inhibit the release of pro-inflammatory cytokines from PBMCs.  相似文献   

4.
Leptin is capable of modulating the immune response. Proinflammatory cytokines induce leptin production, and we now demonstrate that leptin can directly activate the inflammatory response. RNA expression for the leptin receptor (Ob-R) was detectable in human PBMCs. Ob-R expression was examined at the protein level by whole blood flow cytometry using an anti-human Ob-R mAb 9F8. The percentage of cells expressing leptin receptor was 25 +/- 5% for monocytes, 12 +/- 4% for neutrophils, and 5 +/- 1% for lymphocytes (only B lymphocytes). Incubation of resting PBMCs with leptin induced rapid expression of TNF-alpha and IL-6 mRNA and a dose-dependent production of TNF-alpha and IL-6 by monocytes. Incubation of resting PBMCs with high-dose leptin (250 ng/ml, 3-5 days) induced proliferation of resting cultured PBMCs and their secretion of TNF-alpha (5-fold), IL-6 (19-fold), and IFN-gamma (2.5-fold), but had no effect on IL-4 secretion. The effect of leptin was distinct from, and additive to, that seen after exposure to endotoxin or activation by the mixed lymphocyte reaction. In conclusion, Ob-R is expressed on human circulating leukocytes, predominantly on monocytes. At high doses, leptin induces proinflammatory cytokine production by resting human PBMCs and augments the release of these cytokines from activated PBMCs in a pattern compatible with the induction of Th1 cytokines. These results demonstrate that leptin has a direct effect on the generation of an inflammatory response. This is of relevance when considering leptin therapy and may partly explain the relationship among leptin, proinflammatory cytokines, insulin resistance, and obesity.  相似文献   

5.
Surfactant-associated protein A (SP-A) is involved in surfactant homeostasis and host defense in the lung. We have previously demonstrated that SP-A specifically binds to and enhances the ingestion of bacillus Calmette-Guerin (BCG) organisms by macrophages. In the current study, we investigated the effect of SP-A on the generation of inflammatory mediators induced by BCG and the subsequent fate of ingested BCG organisms. Rat macrophages were incubated with BCG in the presence and absence of SP-A. Noningested BCG organisms were removed, and the release of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide were measured at varying times. TNF-alpha and nitric oxide production induced by BCG were enhanced by SP-A. In addition, SP-A enhanced the BCG-induced increase in the level of inducible nitric oxide synthase protein. Addition of antibodies directed against SPR210, a specific macrophage SP-A receptor, inhibited the SP-A-enhanced mediator production. BCG in the absence of SP-A showed increased growth over a 5-day period, whereas inclusion of SP-A dramatically inhibited BCG growth. Inhibition of nitric oxide production blocked BCG killing in the presence and absence of SP-A. These results demonstrate that ingestion of SP-A-BCG complexes by rat macrophages leads to production of inflammatory mediators and increased mycobacterial killing.  相似文献   

6.
Resident host microflora condition and prime the immune system. However, systemic and mucosal immune responses to bacteria may be divergent. Our aim was to compare, in vitro, cytokine production by human mononuclear and dendritic cells (DCs) from mesenteric lymph nodes (MLNs) and peripheral blood mononuclear cells (PBMCs) to defined microbial stimuli. Mononuclear cells and DCs isolated from the MLN (n = 10) and peripheral blood (n = 12) of patients with active colitis were incubated in vitro with the probiotic bacteria Lactobacillus salivarius UCC118 or Bifidobacterium infantis 35624 or the pathogenic organism Salmonella typhimurium UK1. Interleukin (IL)-12, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta, and IL-10 cytokine levels were quantified by ELISA. PBMCs and PBMC-derived DCs secreted TNF-alpha in response to the Lactobacillus, Bifidobacteria, and Salmonella strains, whereas MLN cells and MLN-derived DCs secreted TNF-alpha only in response to Salmonella challenge. Cells from the systemic compartment secreted IL-12 after coincubation with Salmonella or Lactobacilli, whereas MLN-derived cells produced IL-12 only in response to Salmonella. PBMCs secreted IL-10 in response to the Bifidobacterium strain but not in response to the Lactobacillus or Salmonella strain. However, MLN cells secreted IL-10 in response to Bifidobacteria and Lactobacilli but not in response to Salmonella. In conclusion, commensal bacteria induced regulatory cytokine production by MLN cells, whereas pathogenic bacteria induce T cell helper 1-polarizing cytokines. Commensal-pathogen divergence in cytokine responses is more marked in cells isolated from the mucosal immune system compared with PBMCs.  相似文献   

7.
8.
Upregulation of CD14 in Kupffer cells has been implicated in the pathogenesis of several forms of liver injury, including alcoholic liver disease. However, it remains unclear whether CD14 mediates lipopolysaccharide (LPS) signaling in this specialized liver macrophage population. In this series of experiments, we determined the role of CD14 in LPS activation of Kupffer cells by using several complementary approaches. First, we isolated Kupffer cells from human livers and studied the effects of anti-CD14 antibodies on LPS activation of these cells. Kupffer cells were incubated with increasing concentrations of LPS in the presence and absence of recombinant human LPS binding protein (LBP). With increasing concentrations of LPS, human Kupffer cell tumor necrosis factor-alpha (TNF-alpha) production (a marker for Kupffer cell activation) increased in a dose-dependent manner in the presence and absence of LBP. In the presence of anti-human CD14 antibodies, the production of TNF-alpha was significantly diminished. Second, we compared LPS activation of Kupffer cells isolated from wild-type and CD14 knockout mice. Kupffer cells from CD14 knockout mice produced significantly less TNF-alpha in response to the same amount of LPS. Together, these data strongly support a critical role for CD14 in Kupffer cell responses to LPS.  相似文献   

9.
Ramudo L  Manso MA  Vicente S  De Dios I 《Cytokine》2005,32(3-4):125-131
We investigate the ability of acinar cells to produce tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) at different stages of acute pancreatitis (AP). Since oxidative stress is involved in the inflammatory response, the effect of N-acetyl cysteine (NAC) has also been evaluated. AP was induced in rats by bile-pancreatic duct obstruction (BPDO). NAC (50 mg/kg) was administered 1h before and 1h after BPDO. Acinar cells were incubated for 4 h at 37 degrees C in 5% CO2 atmosphere in absence and presence of 24-h BPDO-PAAF (20%, v/v) as stimulant agent. Acinar production of TNF-alpha and IL-10 was analysed by flow cytometry. Plasma amylase activity and histological studies of the pancreas indicated the severity of AP. PAAF significantly stimulated the acinar production of TNF-alpha and IL-10 in control rats. TNF-alpha production was also significantly stimulated in acinar cells of rats with AP, although a decrease in the pro-inflammatory response was found from 6 h after BPDO onwards. However, acinar cells failed to produce IL-10 from 3 h after BPDO. The protective effect of NAC treatment against oxidative cell damage reduced the pancreatic injury and maintained and enhanced the ability of acinar cells to produce IL-10 at early AP stages. As long as acinar cells were not severely damaged in the course of AP, greater ability to produce cytokines in response to PAAF was found in those with higher forward scatter (R2 cells). We suggest that the capability of acinar cells to maintain an appropriate balance between the production of pro- and anti-inflammatory mediators could contribute to determine the degree of severity of AP.  相似文献   

10.
Different signals in addition to the antigenic signal are required to initiate an immunological reaction. In the context of sulfamethoxazole allergy, the Ag is thought to be derived from its toxic nitroso metabolite, but little is known about the costimulatory signals, including those associated with dendritic cell maturation. In this study, we demonstrate increased CD40 expression, but not CD80, CD83, or CD86, with dendritic cell surfaces exposed to sulfamethoxazole (250-500 microM) and the protein-reactive metabolite nitroso sulfamethoxazole (1-10 microM). Increased CD40 expression was not associated with apoptosis or necrosis, or glutathione depletion. Covalently modified intracellular proteins were detected when sulfamethoxazole was incubated with dendritic cells. Importantly, the enzyme inhibitor 1-aminobenzotriazole prevented the increase in CD40 expression with sulfamethoxazole, but not with nitroso sulfamethoxazole or LPS. The enzymes CYP2C9, CYP2C8, and myeloperoxidase catalyzed the conversion of sulfamethoxazole to sulfamethoxazole hydroxylamine. Myeloperoxidase was expressed at high levels in dendritic cells. Nitroso sulfamethoxazole immunogenicity was inhibited in mice with a blocking anti-CD40L Ab. In addition, when a primary nitroso sulfamethoxazole-specific T cell response using drug-naive human cells was generated, the magnitude of the response was enhanced when cultures were exposed to a stimulatory anti-CD40 Ab. Finally, increased CD40 expression was 5-fold higher on nitroso sulfamethoxazole-treated dendritic cells from an HIV-positive allergic patient compared with volunteers. These data provide evidence of a link between localized metabolism, dendritic cell activation, and drug immunogenicity.  相似文献   

11.
Globoid cell leukodystrophy or Krabbe disease (KD), is a hereditary disorder caused by galactosylceramidase deficiency. Progressive accumulation of psychosine is considered to be the critical pathogenetic mechanism of cell death in the Krabbe brain. Psychosine mechanism of action has not been fully elucidated. It seems to induce apoptosis in oligodendrocytes through a mitochondrial pathway and to up-regulate inflammatory cytokines production resulting in oligodendrocyte loss. Our aim was to evaluate the role of psychosine in apoptotic cell death and inflammatory response in a group of patients affected by KD using peripheral blood lymphocytes (PBLs) and peripheral blood mononuclear cells (PBMCs) as a cellular model. PBLs from KP and healthy controls were exposed to 20 microM psychosine and analysed by flow cytometry, agarose gel electrophoresis and fluorescence microscopy. Our results showed that psychosine induces apoptosis in PBLs through a mitochondrial pathway, but the apoptotic response was quite low especially KP. The role of psychosine in the up-regulation of cytokines (TNFalpha, IL8 and MCP1) has been evaluated by ELISA in PBMCs from KP and controls after stimulation with LPS and phytohemagglutinin. Both in basal condition and after LPS stimulation, cells from KP showed a significant increase in TNF-alpha production, reduced MCP1 levels and no modification in IL8. These results indicate that lymphomonocytes from KP had a basal proinflammatory pattern that was amplified by psychosine. In conclusion, the reduced apoptotic response and the atypical cytokine production observed in our experiments, suggest an involvement of inflammatory pattern in immune peripheral cells of KP.  相似文献   

12.
Fly ash was used as a model for ambient particulate matter which is under suspicion to cause adverse pulmonary health effects. The fly ash was pre-sized and contained only particles < 20 microm including an ultrafine fraction (< 100 nm) that contributed 31% to the particle number. In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the formation of ROS with regard to the mass of particles applied. Lipopolysaccharide (LPS) added as a co-stimulus did not increase the formation of ROS induced by fly ash. Furthermore, in LPS (0.1 microg/ml) and tumour necrosis factor-alpha (TNF-alpha; 1 ng/ml) pre-treated cells no increase in reactive oxygen species comparable to fly ash alone is observable. In presence of the metal chelator, desferrioxamine (DFO), ROS formation can be significantly reduced. Neither fly ash nor LPS induced a significant NO release in RLE-6TN cells.  相似文献   

13.
There has been considerable work on the relationships between nutrition and the immune response, particularly on studies that have focused on adaptive responses. There is increasing recognition of the importance of innate immunity in host protection and initiation of cytokine networks. In this study, we examined the effect of select cocoa flavanols and procyanidins on innate responses in vitro. Peripheral blood mono-nuclear cells (PBMCs), as well as purified monocytes and CD4 and CD8 T cells, were isolated from healthy volunteers and cultured in the presence of cocoa flavanol fractions that differ from another by the degree of flavanol polymerization: short-chain flavanol fraction (SCFF), monomers to pentamers; and long-chain flavanol fraction (LCFF), hexamers to decamers. Parallel investigations were also done with highly purified flavanol monomers and procyanidin dimers. The isolated cells were then challenged with lipopolysaccharide (LPS) with quantitation of activation using CD69 and CD83 expression and analysis of secreted tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, IL-10, and granulocyte macrophage colony-stimulating factor (GM-CSF). The chain length of flavanol fractions had a significant effect on cytokine release from both unstimulated and LPS-stimulated PBMCs. For example, there was a striking increase of LPS-induced synthesis of IL-1beta, IL-6, IL-10, and TNF-alpha in the presence of LCFF. LCFF and SCFF, in the absence of LPS, stimulated the production of GM-CSF. In addition, LCFF and SCFF increased expression of the B cell markers CD69 and CD83. There were also unique differential responses in the mononuclear cell populations studied. We conclude that the oligomers are potent stimulators of both the innate immune system and early events in adaptive immunity.  相似文献   

14.
Tumor necrosis factor (TNF)-alpha acts directly on adipocytes to increase production of the lipostatic factor, leptin. However, which TNF receptor (TNFR) mediates this response is not known. To answer this question, leptin was measured in plasma of wild-type (WT), p55, and p75 TNFR knockout (KO) mice injected intraperitoneally with murine TNF-alpha and in supernatants from cultured WT, p55, and p75 TNFR KO adipocytes incubated with TNF-alpha. Leptin also was measured in supernatants from C3H/HeOuJ mouse adipocytes cultured with blocking antibodies to each TNFR and TNF-alpha as well as in supernatants from adipocytes incubated with either human or murine TNF-alpha, which activate either one or both TNFR, respectively. The results using all four strategies show that the induction of leptin production by TNF-alpha requires activation of the p55 TNFR and that although activation of the p75 TNFR alone cannot cause leptin production, its presence affects the capability of TNF-alpha to induce leptin production through the p55 TNFR. These results provide new information on the interplay between cells of the immune system and adipocytes.  相似文献   

15.
Systemic inflammatory responsiveness was studied in normal human pregnancy and its specific inflammatory disorder, pre-eclampsia. Compared with nonpregnancy, monocytes were primed to produce more TNF-alpha throughout normal pregnancy, more IL-12p70 in the first and second trimesters, and more IL-18 in the first trimester only. Intracellular cytokine measurements (TNF-alpha and IL12p70) showed little change by comparison. IFN-gamma production was suppressed in all three trimesters. In pre-eclampsia, IL-18 secretion was increased. Secreted but not intracellular measures of TNF-alpha and IL-12p70 were also further enhanced compared with normal pregnancy. Inhibition of IFN-gamma production was lost and involved both CD56(+) NK and CD56(-) lymphocyte subsets. We determined whether circulating syncytiotrophoblast microparticles (STBM) could contribute to these inflammatory changes. Unbound STBM could be detected in normal pregnancy by the second trimester and increased significantly in the third. They were also bound in vivo to circulating monocytes. Women with pre-eclampsia had significantly more circulating free but not cell-bound STBMs. STBMs prepared by perfusion of normal placental lobules stimulated production of inflammatory cytokines (TNF-alpha, IL12p70, and IL-18 but not IFN-gamma) when cultured with PBMCs from healthy nonpregnant women. Inflammatory priming of PBMCs during pregnancy is confirmed and is established by the first trimester. It is associated with early inhibition of IFN-gamma production. The inflammatory response is enhanced in pre-eclampsia with loss of the IFN-gamma suppression. Circulating STBMs bind to monocytes and stimulate the production of inflammatory cytokines. It is concluded that they are potential contributors to altered systemic inflammatory responsiveness in pregnancy and pre-eclampsia.  相似文献   

16.
Minocycline inhibits LPS-induced retinal microglia activation   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
Hodge G  Hodge S  Han P 《Cytometry》2002,48(4):209-215
BACKGROUND: Cytokines involved in inflammatory bowel disease (IBD) direct a predominantly cell-mediated T- helper-1 (Th1) immune response. The nonspecific anti-inflammatory treatment being used in the management of patients with IBD has not changed much since the 1970s and new therapeutic agents are keenly sought. Several compounds isolated from Allium sativum (garlic) modulate leukocyte cell proliferation and cytokine production. METHODS: To investigate the possible therapeutic effects of garlic in the treatment of patients with IBD, whole blood and peripheral blood mononuclear cells (PBMCs) were stimulated in the presence of various concentrations of garlic extract and the effect on leukocyte cytokine production was determined in vitro using multiparameter flow cytometry. RESULTS: Monocyte interleukin (IL)-12 production was inhibited significantly in the presence of low concentrations of garlic extract (>or=0.1 microg/ml total protein). Monocyte IL-10 production increased significantly and monocyte tumor necrosis factor-alpha (TNF-alpha), IL-1alpha, IL-6, IL-8, T-cell interferon-gamma (IFN-gamma), IL-2, and TNF-alpha decreased significantly in the presence of >or=10 microg/ml garlic extract. Twenty to fifty percent of the immunomodulatory activity of garlic extract on cytokine production was acid labile. The inhibitory activity of methylprednisolone, a commonly used anti-inflammatory in IBD, with garlic on leukocyte cytokine production was additive. CONCLUSIONS: By inhibiting Th1 and inflammatory cytokines while upregulating IL-10 production, treatment with garlic extract may help to resolve inflammation associated with IBD. An in vivo animal model study needs to be undertaken to determine the significance of these in vitro findings.  相似文献   

19.
We report that the addition of human macrophage inflammatory protein-3 beta (MIP-3 beta) to cultures of human PBMCs that have been activated with LPS or PHA results in a significant enhancement of IL-10 production. This effect was concentration-dependent, with optimal MIP-3 beta concentrations inducing more than a 5-fold induction of IL-10 from LPS-stimulated PBMCs and a 2- to 3-fold induction of IL-10 from PHA-stimulated PBMCs. In contrast, no significant effect on IL-10 production was observed when 6Ckine, the other reported ligand for human CCR7, or other CC chemokines such as monocyte chemoattractant protein-1, RANTES, MIP-1 alpha, and MIP-1 beta were added to LPS- or PHA-stimulated PBMCs. Similar results were observed using activated purified human peripheral blood monocytes or T cells. Addition of MIP-3 beta to nonactivated PBMCs had no effect on cytokine production. Enhancement of IL-10 production by MIP-3beta correlated with the inhibition of IL-12 p40 and TNF-alpha production by monocytes and with the impairment of IFN-gamma production by T cells, which was reversed by addition of anti-IL-10 Abs to the cultures. The ability of MIP-3 beta to augment IL-10 production correlated with CCR7 mRNA expression and stimulation of intracellular calcium mobilization in both monocytes and T cells. These data indicate that MIP-3 beta acts directly on human monocytes and T cells and suggest that this chemokine is unique among ligands binding to CC receptors due to its ability to modulate inflammatory activity via the enhanced production of the anti-inflammatory cytokine IL-10.  相似文献   

20.
Cytokines play a major role in the control of inflammatory responses, participate in the regulation of blood phagocyte activities and as such are used for immunomodulatory therapy. In the present study, the influence of IL-10 on human blood phagocyte activity in the presence/absence of IL-6, IL-8 and TNF-alpha was tested in vitro. Our research analyzed the effects of cytokines on the production of reactive oxygen species measured by chemiluminescence and flow cytometry, and on the expression of surface molecules (CD11b, CD15, CD62L, CD31) measured by flow cytometry. IL-10 had no inhibitory effect on reactive oxygen species production and the expression of any examined adhesion molecule by resting or stimulated blood phagocytes within 3 h of incubation. Conversely, TNF-alpha, IL-6, and IL-8 increased reactive oxygen species production and the expression of CD11b and CD15 on both neutrophils and monocytes and decreased the expression of CD62L. These priming effects of the tested pro-inflammatory cytokines were not affected by IL-10. The obtained results suggest that IL-10 does not directly control blood phagocyte activation. These results also provide better information about the contribution of IL-6, IL-8 and TNF-alpha to the regulation of blood phagocyte-mediated inflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号