首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Myelin was isolated from the brain of a patient with Krabbe's globoid cell leukodystrophy at 0.4% of the normal yield. Despite the exceedingly low yield, the fraction appeared morphologically clean, and consisted mostly of well-preserved myelin lamellae and few contaminating structures. Total lipid and cholesterol were slightly lower than in normal myelin. Total phospholipid was normal, but the ratio of ethanolamine phospholipid to lecithin was reversed. Total galactolipid was normal, and consisted only of cerebroside and sulfatide in normal proportions. The only sugar in cerebroside and sulfatide was galactose. The fatty acid composition of cerebroside and sulfatide was essentially normal with no deficiency of long-chain fatty acids and only with a reversed ratio of C(24:0) to C(24:1) in cerebroside. These data appear to exclude the previous postulate that abnormally rapid breakdown of myelin occurs in this disorder as the result of the formation of chemically abnormal myelin, deficient in sulfatide.  相似文献   

2.
Effect of Triethyl Tin on Myelination in the Developing Rat   总被引:3,自引:2,他引:1  
Myelinogenesis in developing rats was studied following chronic dosing with triethyl tin (TET), at a level of 1.0 mg TET/kg body wt/day. Experiments included starved controls with body weights depressed by 17 to 40% to equal those of the TET-treated groups. Rats at ages of 16, 21, and 30 days showed decreases relative to well-nourished controls in body weight, forebrain weight, myelin yield, cerebroside level, and specific activity of brain 2',3'-cyclic nucleotide-3'-phosphohydrolase when dosed with TET. At 30 days, myelin and cerebroside yields were reduced by approximately 55%, while CNP activity was reduced by less than 20%. No differences in the forebrain myelin protein composition between control, starved, and TET animals were noted. The rate of myelin protein synthesis relative to brain total protein (assayed by incorporation of intracranially injected [3H]glycine into brain homogenate and myelin proteins) was decreased in the TET rats in proportion to the decreased yield of myelin, but no particular myelin protein was preferentially affected. Matching starved controls exhibited similar body weight decreases, less pronounced forebrain weight decreases, and little or no decrease in myelin concentration. There was a relative increase in the myelin protein synthesis rate in the starved rats, indicating preferential utilization of limited protein precursors for myelin protein synthesis. Spinal cord myelin was also decreased in the TET rats, but less severely than in the forebrain. At all ages optic, but not sciatic, nerves showed decreases in myelin concentration with TET treatment. We conclude that TET inhibits forebrain growth and CNS myelination more severely than can be accounted for by a general metabolic insult.  相似文献   

3.
The influence of hyperphenylalaninemia on the lipid composition of brain myelin has been investigated in 19-day-old chick embryos. CNP-ase activity was used as myelin marker enzyme for myelin isolation. CNP-ase activity was significantly lower in hyperphenylalaninemic myelin when compared with control. No significant differences were observed after experimental treatment in the total lipid content of myelin as well as in the proportion of cholesterol:phospholipid:galactolipid. Nevertheless, a clear increase in the percentage of esterified cholesterol was found. No appreciable alterations were observed in the phospholipid composition of brain myelin from both control and hyperphenylalaninemic chick embryos. However, the ratio of unsaturated to saturated fatty acids in serine plasmalogen and sphingomyelin was considerably increased by this treatment. This ratio in choline and ethanolamine phosphatides from treated embryos did not differ from that of controls.  相似文献   

4.
The lipid composition of the brain, including myelin, was studied in detail in two cases with a variant form of metachromatic leukodystrophy (multiple sulphatase deficiency type). In the white matter, the sulphatide concentration was 3-4 times higher than the normal level in both cases. There was a significant accumulation of cholesterol sulphate in the brain, liver and kidney of both cases. The ganglioside pattern in the grey and white matter was abnormal, with a higher proportion of GM3, GM2 and GD3-gangliosides. Non-lipid hexosamine contents were increased 1.5-2 times in brain, 8-10 times in liver and 2-3 times in kidney. Increased amounts of glucocerobroside, ceramide lactoside and ceramide trihexoside were present in grey and white matter of both cases. Recovery of purified myelin from two patients' brains was much less than from control (1-2% in case 1 and 20-30% in case 2). The lipid composition of myelin was almost normal except for a higher proportion of sulphatide, with a decreased amount of cerebroside. The fatty acid compositions of myelin sulphatide and sphingomyelin were almost normal, while non-hydroxy fatty acids of cerebroside contained less long-chain fatty acids, as characterized by a significant increase of C16:0 and C18:0 fatty acids. The myelin polypeptide pattern by SDS-disc gel electrophoresis showed a relative decrease of basic protein and of proteolipid protein. A possible mechanism of myelin loss in MSD is discussed.  相似文献   

5.
The metabolism of myelin undergoing breakdown as a result of edema induced by chronic administration of triethyl tin (TET) dissolved in the drinking water (10 mg/l.) was examined. The spinal cord showed more edema and loss of myelin than the brain. Uptake in vitro of [1-14C]acetate into myelin lipids of slices of brain or spinal cord from TET-treated rats was depressed until 4–5 weeks after the beginning of the regime, then rose to above normal levels. The uptake of [l-14C]leucine into myelin protein rose within several weeks of TET treatment to levels averaging over 300 per cent of normal and remained high even after the TET was removed. The high levels of [l-14C]leucine incorporation were inhibited by cycloheximide and were not explained by an increase in the size of the free amino acid pool. The three classes of myelin proteins, basic, proteolipid protein, and Wolfgram protein shared in the increased incorporation. Spinal cord myelin showed the greatest metabolic response, brain stem myelin less, and myelin from the forebrain was minimally affected by the TET treatment. Myelin prelabelled by intracisternal injection of [l-14C]acetate and [l-14C]leucine before the onset of TET administration showed faster turnover in myelin proteins in relation to the myelin lipids than the control in the most severely affected animals, but not in others less affected. A ‘floating fraction’ was observed floating on 10.5% (w/v) sucrose during the myelin purification. This fraction showed metabolic characteristics typical of myelin, and myelin-labelling studies at various stages of the animal's development showed it to be derived from recently synthesized myelin. The floating fraction from the brain contained less cerebroside and more lecithin than myelin, while the spinal cord floating fraction composition was much like that of myelin. The floating fractions contained less protein typical of myelin (basic and proteolipid protein) and more highmolecular-weight protein which may have been derived from contaminating microsomes. The floating fraction was presumed to be partially deproteinated myelin. The use of TET-treatment as model for demyelination as a result of edema and proceeding in the absence of macrophages is discussed.  相似文献   

6.
Centrifugation of isolated myelin on discontinuous sucrose gradients resulted in a separation into three bands and a pellet. The three bands were morphologically identical to myelin, whereas the pellet consisted primarily of vesicular membranes. These four fractions differed from one another in their lipid-to-protein ratios and in molar ratios of cholesterol:phospholipid:galactolipid. All of the fractions contained proteins typical of myelin, although the proportions of the proteins varied, with the pellet being the lowest in basic protein and proteolipid protein. High activity of 2′,3′-cyclic nucleotidase and low activity of cerebroside sulphotransferase further distinguished these fractions from the microsomal fraction. Distribution of radioactive sulphatide in the subfractions at 15 min after intracranial injection of radioactive sulphate indicated that newly-labelled sulphatide first appeared in the lipid-poor fractions, followed by the lipid-rich fractions; results of pulse-chase experiments also suggested this relationship. Several days or weeks after the injection of radioactive sulphate, most of the radioactive sulphatide was in the lipid-rich fractions.  相似文献   

7.
Myelination in rat brain: changes in myelin composition during brain maturation   总被引:31,自引:17,他引:14  
Abstract— Myelin was isolated from rat brains during development by a procedure giving fractions of constant purity at all ages. The lipid composition of these fractions and of whole brains of littermates was determined. The amount of myelin recovered per brain was a nearly linear function of the logarithm of age from the youngest (15 days) to the oldest (425 days) animals studied. With the exception of the earliest age point, the isolated myelin accounted for approximately 40 per cent of total brain galactolipid, evidence that a constant fraction (calculated to be 60 per cent) of myelin was recovered at all ages. Although the lipid-protein ratio of the myelin was constant with age, marked changes were seen in the amounts of cerebroside, sulphatide, phosphatidylcholine and desmosterol. The total galactolipid increased from 21 per cent of the total lipid at age 15 days to about 31 per cent at maturity. Phosphatidylcholine decreased from 17 to 11 per cent during the same period. Desmosterol decreased from 2.5 per cent of the total sterol to 0.2-0.3 per cent. All of these changes were complete between 2 and 5 months of age; no other ‘lower phase’ lipids showed significant changes with age. Although qualitatively similar to those reported by others, the changes differed in magnitude, with more stability in the levels of cholesterol and phosphatidalethanolamine with development. A sensitive indicator of the maturation of myelin was the mole ratio galactolipid/phosphatidylcholine, which varied from 1.2 at age 15 days to 2.8 at maturity. The maximum rate of myelination occurred at 20 days of postnatal age when myelin was deposited at the rate of 3.5 mg day?1 brain?1. However, at this age the rat brain had only 15 per cent of its eventual complement of myelin. The rate of accumulation of cerebroside in the whole brain paralleled that of myelin, and was the only lipid to show this relationship. Myelin deposition appeared to be almost solely responsible for the continued increase in brain weight after about 100 days of age.  相似文献   

8.
Abstract: The lipid composition of neuronal somata and neuritic processes of cultured root ganglia has been determined. Neuronal soma contained 37% of dry weight as lipid (15.4% cholesterol, 4.8% galactolipid, and 57.1% phospholipid). The major phospholipids were phosphatidylcholine and phosphatidyl ethanolamine. Galactolipids consisted of cerebroside and sulfatide in molar ratio 2:1. The neuronal soma contained tetrasialo-, disialo-, and monosialoganglioside. In contrast, neurites contained 15% of the dry weight as lipid (22.1% cholesterol, 7.7% galactolipid with cerebroside and sulfatide in molar ratio 2:1, and 56.4% total phospholipid). The neuritic galactolipid content was higher, as was the percentage of sphingomyelin, and phosphatidyl serine. The higher cholesterol content in neuritic lipid reflected the higher percentage of plasma membrane in this compartment. The ganglioside pattern of neurites was distinct from that of the neuronal soma and consisted entirely of gangliosides GQ1b, GT1b, GD1b, GD1a, and GD3, with no monosialogangliosides. The results indicate a preferential phospholipid and glycolipid sorting to the neuritic plasma membrane that may be related to the distinctive functions of this neuronal compartment.  相似文献   

9.
(1) Brain composition and developmental changes were investigated in a mutant (‘Jimpy’) mouse characterized by a severe myelin deficiency. (2) Significantly lower cholesterol, phospholipid and galactolipid values were observed, and the accumulation of these lipids during the myelination period was markedly reduced or absent. (3) The most remarkable feature of ‘Jimpy’ brain was a very small galactolipid content. In 29-day-old mutants the concentration of galactolipids was 0-18 μ moles/g wet wt., representing a 46-fold decrease when compared to values determined in normal mice. (4) There was no such striking change in the distribution of different phospholipids. However, lowered relative amounts of some phospholipids, e.g. ethanolamine plasmalogen, sphingomyelin and phosphatidylserine, were observed in ‘Jimpy’ brain. (5) Protein content was also lower in mutant brains and showed an absolute decrease after 23 days of life. (6) These data support the statement that the process of myelination is disturbed at an early stage, resulting in a deficiency of mature myelin sheaths and leading probably to the breakdown of primitive myelin structures.  相似文献   

10.
THE COMPOSITION OF MYELIN FROM THE MUTANT MOUSE ''QUAKING''   总被引:4,自引:2,他引:2  
Abstract— Myelin was isolated from the brains of adult Quaking mice, a mutant showing a deficiency of myelin in the central nervous system, and normal controls. The mutant myelin was found to have a higher flotation density than that of the control and showed marked differences in lipid composition. The myelin from Quaking mice was found to be deficient in cerebroside and ethanolamine phospholipid. Acrylamide gel electrophoresis of total myelin protein demonstrated a pronounced deficiency of proteolipid protein. The activity of cyclic 2',3'-AMP phosphohydrolase was normal.  相似文献   

11.
Isolation and some chemical properties of oligodendroglia from calf brain   总被引:20,自引:17,他引:3  
Abstract— The method of Norton and Poduslo (1970) for isolating brain cells has been adapted for the isolation of oligodendroglia from the white matter of calf brain. The cells were obtained in greater than 90 per cent purity, and in a yield of 11 × 106 cells/g of white matter. This number of cells represented a recovery of 11 per cent of the total cells in the tissue and therefore a considerably higher recovery of the original number of oligodendroglia. The average cell contained 5, 2 pg of DNA, 2–0 pg of RNA and 6, 7 pg of lipid. The lipid comprised cholesterol, galactolipid (both cerebroside and sulphatide) and phospholipid in the molar ratio of 1:0, 45:2, 3. Gangliosides were present in a concentration similar to that found in isolated rat neurons, The myelin-specific enzyme, 2′, 3′-cyclic nucleotide 3′-phosphohydrolase, was present at a level nearly equal to that in myelin, and eight-fold higher than the levels in rat neurons or astrocytes. The isolated oligodendroglia differed considerably from isolated astrocytes in size, morphology and chemical composition.  相似文献   

12.
Lipid and basic protein interaction in myelin   总被引:4,自引:1,他引:3  
1. Purified myelin labelled with [(3)H]myo-inositol or [1-(14)C]acetate was incubated with trypsin or acetylated trypsin at 37 degrees C, pH8.0 for 30min. 2. After incubation and centrifugation analysis of the myelin pellet showed marked digestion of basic protein on polyacrylamide-gel electrophoresis. Proteolipid and Wolfgram proteins remained unchanged. 3. A loss of 15% of total protein and loss of all classes of lipids was also found. Most significant lipid losses were phosphoinositides, phosphatidylserine and sulphatide. 4. A low-density material containing more phospholipid than cholesterol and galactolipid was isolated from the supernatant obtained after centrifugation of trypsin-treated myelin. 5. Interaction of sulphatide and myelin basic protein was shown to take place in a biphasic system. Basic protein does not form any complex either with cerebroside or cholesterol in the same solvent system. 6. The release of acidic lipids from myelin suggests that they may be linked to basic protein by ionic forces and the neutral lipids may be by lipid-lipid interactions. 7. The relevance of these studies as a model of brain degeneration is discussed.  相似文献   

13.
The effect of 60 hr ethanol ingestion on lipid composition of liver and brain membranes from 2-day-old chicks was investigated. Analysis of hepatic membrane cholesterol shows that ethanol induced a slight increase in microsomes exclusively due to free cholesterol while mitochondria was not affected. In brain, both fractions showed a clear increase in their cholesterol content, while a high decrease was observed in myelin. Free cholesterol was also the main responsible for the changes found in brain. The ethanol-treated animals showed an alteration in their phospholipid composition exclusively in brain microsomes and myelin. Despite all these changes, the values of cholesterol/phospholipid molar ratio in both liver and brain membranes remained unaltered after short ethanol treatment. Our results indicate that neonatal chick brain membranes appears to be especially sensitive to the presence of ethanol.  相似文献   

14.
Lipid composition of myelin fractions isolated from Lewis rats during the early stage of the development of experimental allergic encephalomyelitis (EAE) were determined by high-performance thin layer chromatography (HPTLC). When comparing the myelin fractions of EAE-affected animals with those of controls, the main differences were observed in the light fraction, where a decrease in the percentage of phospholipids (PH) relative to the total lipids was observed. These findings give further support that the light myelin fraction being the most sensitive at the onset of clinical symptoms must play a key role in demyelinating process.Abbreviations used EAE experimental allergic encephalomyelitis - PH phospholipids - CH cholesterol - GL galactolipid - PE phosphatidylethanolamine - SPM sphingomyelin - PC phosphatidylcholine - PS phosphatidylserine - PI phosphatidylinositol - CB cerebroside - CB-OH hydroxy-cerebroside - SULF sulfatides - BP basic proteins  相似文献   

15.
The myelin proteolipid protein (PLP) is the major structural protein of CNS myelin, accounting for approximately half of total myelin protein. We studied synthesis and accumulation of myelin components for two months postnatally in PLP‐null mice and age‐matched controls. Accumulation of myelin, as assayed by levels of whole brain cerebroside and myelin basic protein, was normal in the knockout mice. The rate of cerebroside synthesis in the knockout mice was also normal. Myelin was isolated at several ages during development, using a standard subcellular fractionation protocol. The yield of ‘purified myelin’ isolated from a large particle (crude mitochondrial) fraction was reduced in PLP‐null mice, but increased amounts of ‘myelin’ were obtained in the small particle (crude microsomal) fraction. This ‘myelin’ in the crude microsomal fraction was identified as such by flotation on 0.85 m sucrose and the myelin‐characteristic 2 : 1 molar ratio of cholesterol to cerebroside. This suggests myelin from PLP‐null mice is physically more fragile than normal myelin, and that during tissue dispersion, much more PLP‐null myelin is fragmented into small vesicles than is the case for normal myelin. Three hours after intracranial injection of tritiated acetate into PLP‐null mice, cerebroside in myelin isolated from the large particle fraction was at a similar specific radioactivity to that isolated from the small particle (crude microsomal) fraction, suggesting that the most recently deposited PLP‐null myelin is not preferentially unstable. The increased fragility evident during tissue dispersion is indicative of an underlying structural abnormality in PLP‐null myelin. Whether this inherent structural instability affects myelin metabolism is under investigation. Acknowledgements: Supported by USPHS & NMSS grants.  相似文献   

16.
Plasma membranes of boar sperm from caput, corpus and cauda of the epididymis were purified by differential- and sucrose-density equilibrium centrifugation and were found to yield a single band at a density of 1.13 g/cm3. This fraction was enriched in acid and alkaline phosphatase, 5'-nucleotidase and (Na+ + K+)-ATPase activities, whereas it contained minimal amounts of hyaluronidase and N-acetylglucosaminidase and no succinic acid dehydrogenase activities. The plasma membrane of caput, corpus and cauda sperm had the same phospholipid/protein and cholesterol/phospholipid ratios but yielded different amounts of protein and individual lipid classes. Several changes in the plasma membrane were observed during transit of sperm through the epididymis. Within the phospholipid class a decrease in the percentage of phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol was detected accompanied by an increase in amount of phosphatidylcholine, sphingomyelin and polyphosphoinositides. In the other lipid classes there was a decrease in the amount of free fatty acid and the major glycolipid. The amount of cholesterol decreased, while the amount of desmosterol and cholesterol sulfate increased. There was an increase in the amount of diacylglycerol. In addition, the changes in the fatty acid composition of the total membrane lipid and each phospholipid were determined. The above changes in the lipid composition of the plasma membrane during epididymal maturation may help to explain the decreased resistance to cold shock and changes in membrane fluidity of sperm during transit in the epididymis.  相似文献   

17.
Segler-Stahl  K.  Demediuk  P.  Castillo  R.  Watts  C.  Moscatelli  E. A. 《Neurochemical research》1985,10(4):563-569
Experimental spinal cord trauma was produced in 3-month-old SS-1 minature pigs by dropping a 25 g weight from a height of 20 cm upon the exposed spinal cord. The histological lesion consisted of edema and hemorrhage. Phospholipid concentration and composition, cholesterol concentration and phospholipid fatty acid composition were determined in whole spinal cord 3 hours after injury, and in spinal cord myelin 5 hours after injury. Three hours after injury phospholipid and cholesterol concentration were decreased by about 14% in the whole spinal cord. Trauma had no effect on the phospholipid composition of whole spinal cord and myelin. Fatty acid composition of myelin also did not change after injury, and changed very slightly in the whole spinal cord. It is concluded that edema following spinal cord trauma is much more extensive than previously assumed. Furthermore, peroxidation of membrane lipid fatty acids does not appear to be a significant factor in spinal cord pathology 3 hours after injury.  相似文献   

18.
Abstract— Subcellular fractions isolated from rat brain aggregating cell cultures were studied by electron microscopy and showed the presence of typical myelin membranes. The chemical composition of purified culture myelin was similar to the fraction isolated from rat brain in terms of CNP specific activity, protein and lipid composition. The ratio of small to large components of myelin basic protein was comparable in culture and in vivo. These two proteins incorporated radioactive phosphorus. The major myelin glycoprotein was present and during development in culture its apparent molecular weight decreased although it never reached the position observed in myelin isolated from adult rats. In culture, the yield of myelin did not increase substantially between 33 and 50 days and was comparable to that of 15-day-old rat brain. The ratio basic protein to proteolipid protein resembled immature myelin and the cerebroside content was very low. A 'floating fraction' was isolated from the cultures and contained some myelin but mostly single membranes. Although these results indicate that myelin maturation is delayed in vitro this culture system provides substantial amounts of purified myelin to allow a complete biochemical analysis and metabolic studies during development.  相似文献   

19.
Abstract— The variation with age of the fatty acid composition of the major lipids in human brain myelin was compared with that of cerebral white matter from the same region. The myelin was isolated from the semiovale centre of the cerebrum of 27 subjects neonatal to old aged. The phospholipid, cholesterol and galactolipid concentrations were determined in all the samples, as were the proportions of the major phospholipid classes. The proportions of cholesterol and especially of the galactolipids increased in myelin during the first 6 months, and in cerebral white matter up to 2 years. During this period the individual phospholipids also varied substantially. Serine phosphoglycerides and especially sphingomyelins increased, and choline phosphoglycerides decreased. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) and sphingomyelins underwent the largest changes. The proportions of saturated fatty acids in EPG diminished rapidly, and there was an increase of monoenoic acids. Fatty acids of the linoleic acid series showed a peak between 4 and 12 months, after which time their proportion slowly diminished to old age. The major fatty acid of this series was docosatetraenoic acid, 22:4 (n-6), which constituted more than 25% of total fatty acids at the maximum level. The fatty acid changes were larger in cerebral white matter, but from 2 years of age the EPG fatty acid pattern in myelin was similar to that in white matter. The fatty acid changes in serine and choline phosphoglycerides of myelin with maturation were much less striking than in EPG but of a similar type. In myelin sphingomyelin the proportion of saturated long-chain fatty acids, C16-C22, diminished, while that of monoenoic acids increased and continued to do so up to old age. From 2 years of age the fatty acid patterns in myelin and cerebral white matter were quite similar. Also the fatty acid patterns of cerebrosides and sulphatides in cerebral white matter and myelin were the same except for the first 2 months of life. The same fatty acid changes occurred in cerebrosides and sulphatides as in the sphingomyelins, i.e. increased proportions of unsaturated (monoenoic) acids. The proportions of 24:1 and 24h:1 and of the odd-numbered fatty acids 25:1 and 23h:1 continued to increase to old age. The variations of the individual lipid fatty acid patterns were small except in the youngest age classes, in which the variations were presumably ascribable to the difficulty in determining the gestational age.  相似文献   

20.
Abstract: The metamorphic changes in levels of glycolipids and myelin proteins and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) in the brains of bullfrog tadpoles, adult frogs, and axolotls were investigated, with particular emphasis on myelin maturation. The concentrations of cerebroside. sulfatide, and galactosyldiacylglycerol gradually increased from the onset of prometamorphosis throughout the active metamorphic period and then greatly increased after metamorphosis was completed. The ratio of glucocerebroside to galactocerebroside increased greatly in the prometamorphic period and then rapidly decreased to the frog level during the climax period. The fatty acid compositions of cerebroside and sulfatide showed a developmental change, with 24:1 being more predominant in the later metamorphic stage. The proportion of hydroxy fatty acids increased up to the onset of the prometamorphic stage and thereafter remained constant at ∼ 50% of the total. The CNP activity remained unchanged throughout metamorphosis at 60% that in frog myelin and increased in the adult frog. The composition of tadpole myelin proteins remained constant during metamorphosis, with large basic protein being the most abundant, and in the frog, proteolipid protein and large basic protein were present in comparable amounts. The two adult forms of axolotl, i.e., the neotenous and metamorphosed forms, exhibited almost identical myelin constituents, and CNP activity in the neotenous form amounted to one-fifth that in the bullfrog. These results indicate that active biosynthesis of myelin marker components occurs as metamorphosis proceeds, but more pronounced changes of myelin components occur after metamorphosis is completed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号