首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以抗癌胚抗原(Carcinoembryonic antigen, CEA)单链抗体与假单胞菌外毒素(Pseudomonas exotoxin A, PEA)的截短和修饰形式PE38/KDEL构建重组免疫毒素CEA/PE38/KDEL,并在大肠杆菌菌株BL21(DE3)-star中表达。采用镍离子螯合层析法纯化变性的包涵体样品,并用连续梯度透析的方法对纯化后的包涵体进行复性。采用流式细胞术鉴定复性产物与靶细胞的结合活性,结果表明免疫毒素CEA/PE38/KDEL具有与靶细胞特异性结合的活性。以MTT法检测免疫毒素对肿瘤细胞的体外杀伤活性,结果表明该免疫毒素对SW1116和CNE_2细胞具有特异性杀伤活性。证明了经包涵体复性的抗CEA免疫毒素CEA/PE38/KDEL对表达CEA抗原的肿瘤细胞具有良好的结合和杀伤活性。  相似文献   

2.
Immunotoxins have the potential to be powerful tools for selective cell killing, but their lack of clinical success against solid tumors indicates a need to better understand factors which limit immunotoxin transport in three-dimensional systems. In this work, a previously developed model which related immunotoxin toxicity to cellular trafficking in a single cell was coupled with a term accounting for diffusive transport of immunotoxin in a solid tumor sphere. This created a mathematical model which is capable of simulating the biological response of multicell tumor spheroids (MTS) to immunotoxin treatment. The model was used to predict the kinetics of protein synthesis inhibition in MTS treated with transferrin receptor-targeted immunotoxins as a function of immunotoxin concentration and toxin choice. HeLa cells were grown as MTS and treated with immunotoxins constructed from the anti-transferrin receptor antibody OKT9 and the toxins gelonin or CRM107, and the average protein synthesis inhibition and growth rates were measured. With no fitted parameters, the mathematical model quantitatively predicted the experimental observations. Immunotoxins were generally less effective against MTS than monolayer cells at equivalent conditions; for OKT9-gelonin at high concentrations this decrease in efficacy was attributed primarily to heterogeneous receptor distribution in MTS whereas for OKT9-CRM107 the decrease was caused primarily by a large barrier to penetration of the immunotoxin into the spheroid. The experimentally verified model was used to define the conditions which lead to large penetration barriers. In general, transport barriers in MTS become more important as immunotoxins become more effective against cells grown as monolayers. The proposed model is unique in its ability to predict toxicity in MTS directly, and is an important step toward understanding immunotoxin effect on tumors in vivo.  相似文献   

3.
Summary In order to gain a better understanding of the interaction between immunotoxins and tumor cells at the level of three-dimensional tumor mass, we evaluated the cell kill effects of monoclonal antimelanoma-antibody/ricin-A-chain immunotoxin (ITN) on melanoma cells in multicellular tumor spheroids (MTS) as well as the penetration of ITN into MTS. For Minor melanoma cells in monolayer the ITN exerted cytotoxic effects after as little as 1 h of exposure. Increasing exposure time resulted in progressive increases in cytotoxic activity. In contrast, the cell kill effects of ITN were markedly delayed and reduced when Minor cells were in MTS. The ITN cytotoxic effects on the melanoma MTS were more than 100 fold less than those in monolayer. Patterns of ITN-induced cytotoxicities for Minor and for another melanoma cell line, DND-1A, were comparable. The native ricin A was more active against PC-10 squamous lung cancer cells than Minor cells, whereas the ITN was more cytotoxic against Minor cells than PC-10 cells, thus exhibiting selectivity. An autoradiographic study revealed time-dependent penetration of radiolabeled ITN from the surface of Minor MTS into the core. Incubation for 1 h resulted in the penetration of ITN into only the two or three outer layers of the Minor MTS, and low grain counts. Prolonged exposure resulted in inhomogeneous penetration of ITN into almost the entire melanoma MTS. Penetration of ITN into PC-10 MTS was extremely poor. The reduced cytotoxicity of ITN on melanoma cells in MTS as compared to cells grown in monolayer appears to correlate with its inhomogeneous distribution in the MTS. The delayed cytotoxicity of ITN is also consistent with its slow penetration into the core of the MTS.  相似文献   

4.
Summary Anti-carcinoembryonic antigen (CEA) immunotoxins constructed with multiple anti-CEA antibodies (goat and baboon polyclonal, and three murine monoclonal antibodies) by covalently linking them to the A chain of ricin via a disulfide bond all function as potent and specific toxins for CEA-bearing cells, suggesting that the CEA molecule is capable of directing productive internalization of ricin A chain. The high potency of anti-CEA immunotoxins apparently makes addition of ricin B chain unnecessary for high toxic efficiency, as in some other systems, because presence of the B chain reduces target cell specificity. Several characteristics of the immunotoxins which might account for their cytotoxic potency were studied. Equilibrium association constants of the goat, baboon, and murine monoclonal C-19 antibodies with fluid-phase CEA were determined by using Langmuir plots and were found to be 8.79, 6.61, and 8.13×109 M –1, respectively, indicating the high and similar affinities of the three antibodies toward CEA. Radioimmunoassay binding studies of the three immunotoxins with 125I-CEA showed that the antibody portions of the molecules retained the ability to form complexes with CEA after conjugation to ricin A chain. The maximum number of anti-CEA antibody molecules bound per cell, as demonstrated by 111In-labeled C-19 binding assays with CEA-bearing cell lines, varied from 2.65×105 per cell for HT29 to 2.01×106 for LoVo, with an intermediate value of 1.17×106 per cell for WiDr. Cytotoxicity of the immunotoxins was assessed by inhibition of protein synthesis and expressed as a median inhibitory dose (ID50). Comparison of the ID50's of each immunotoxin on the three cell lines has shown that the immunotoxin made of the monoclonal C-19 antibody is in general 6 to 7 times more cytotoxic than the goat and baboon antibody immunotoxins. The affinity of CEA-antibody binding is probably an important, but not a sole factor in determining the immunotoxin potency. The fact that the antibodies with very similar affinity toward fluid phase CEA make immunotoxins of different potency might indicate that interactions with membrane-bound CEA are more complex and/or the efficiency of internalization of various immunotoxins is different. An important factor in immunotoxin action appears to be the CEA content in target adenocarcinoma cells.Supported in part by the NIH BRSG grant SO7RRO5712, the American Cancer Society, Mass. Div. Research Grant 1543-C-1, and by the Aid for Cancer Research (Boston) award to L. V. L., and by RO1 CA 29160 and RO1 CA 39748 grants to T. W. G.  相似文献   

5.
Summary Cultured prostate carcinoma cells incubated in the presence of a novel hybrid immunotoxin and ricin A chain exhibited synergy with the chemotherapeutic drugs vinblastine, methotrexate, and bleomycin. No cooperative effect was noted with adriamycin. Under conditions where individual components of immunotoxin or chemotherapeutic drug mixtures were nontoxic or minimally toxic the immunotoxin-drug mixture exhibited marked impact on 14C amino acid incorporation into prostate carcinoma cells. Analysis of drug-treated cells by flow cytometry indicated that cells exposed to vinblastine and bleomycin bound hybrid immunotoxin antibody to a greater extent than cells not exposed to these drugs. Adriamycin did not exhibit synergistic cytotoxicity with hybrid immunotoxin. Also, adriamycin did not enhance antibody binding as evaluated by flow cytometry. The fact that hybrid monoclonal antibody-ricin A chain (HIT-RAC) conjugates inhibited uptake of 14C amino acids 3 to 10-fold within 48 h of incubation with target cells and that this inhibition was further increased 2 to 3-fold in conjunction with three out of four chemotherapeutic drugs tested may be attributed to the unique cytotoxicity imposed by the hybrid immunotoxins. The RAC moiety is not chemically coupled to antibody but instead occupies one of the antigen-combining sites of the molecule. In this manner, RAC is closely juxtaposed to the cell membrane of the target cell and is anchored in this position via binding of the remaining antigen-combining site to p40 prostate restricted antigen.  相似文献   

6.
The possibility of efficient directed elimination of human erythroblastoid cells by the conjugate of IgM-monoclonal antibody HAE9 directed against the erythroblast antigen and the A-chain of a plant toxin ricin has been demonstrated. The conjugate contained 2 molecules of A-chain per one antibody molecule. The efficiencies of the cytotoxic effect of native ricin and the conjugate were compared according to the number of binding sites on the surface of K562 cells as well as to the internalization rate of these molecules. As was shown, that the number of binding sites for the antibody approaches 2.7.10(4) molecules/cell, K a being equal to 1.7.10(8) M-1 while for ricin these indices constitute 2.4.10(5) and 4.6.10(8) M-1. Almost 100% of antibodies and 36% of ricin are internalized within 10 min at 37 degrees C. At a concentration 10(-11) of native ricin and 10(-10) of immunotoxin the 50% inhibition of growth of K562 cells carrying the erythroblast antigen on their surface is observed.  相似文献   

7.
C-terminal analogues of neuropeptide Y have been synthesized. The influence of chain length, single-amino-acid substitutions and segment substitutions on receptor binding, biological activity and conformational properties has been investigated. Receptor binding and in vivo assays revealed biological activity already for amino acids 28-36 of neuropeptide Y [neuropeptide Y-(Ac-28-36)-peptide] which increased with increasing chain length. Replacement of Arg25 in neuropeptide Y-(Ac-25-36)-peptide had no influence on binding, whereas Arg33 and Arg35 cannot be replaced by lysine or ornithine without considerable decrease in receptor binding. The introduction of conformational constraints by the 2-aminoisobutyric acid residue (Aib) in position 30 and replacing the amino acids 28-32 by Ala-Aib-Ala-Aib-Ala decreased receptor binding. However, the corresponding Aib-Ala-Aib-Ala-Aib-substituted analogue and a more flexible analogue with Gly5 at position 28-32 exhibited considerable affinity for the receptor. All these substitutions led to a decrease in postsynaptic activity. Strong agonistic activities could be detected in a series of 10 discontinuous analogues, which are constructs of N-terminal parts linked via different spacer molecules to C-terminal segments. One of the most active molecules was neuropeptide Y amino acids 1-4 linked to amino acids 25-36 through aminohexanoic acid (Ahx) [neuropeptide Y-(1-4-Ahx-25-36)-peptide].  相似文献   

8.
The initial step in ricin A-chain (RTA)-immunotoxin-mediated cell cytotoxicity involves binding to the target cell Ag through the antibody moiety. One of the factors influencing this is the affinity of the antibody component for the target cell Ag. Multiple epitopes on carcinoembryonic Ag have been mapped providing a range of mAb of known specificity. These have been used to show that the cytotoxicity of an immunotoxin containing RTA conjugated to an anti-carcinoembryonic Ag mAb (228-RTA) is potentiated by mAb recognizing different epitopes. The potentiating antibodies also increased the level of target cell binding of antibody 228. Cross-linking of cell bound antibody was not involved because monovalent fragments of a potentiating antibody were effective. The potentiating antibodies modified the binding affinity of 228 antibody increasing the t1/2 of antibody at the tumor cell surface. This increased the dwell time of cell bound antibody and using conjugates of 228 linked to albumin-tetramethylrhodamine it was shown to enhance conjugate endocytosis. These investigations indicate that enhanced antibody affinity leads to increased endocytosis of bound immunoconjugate and potentiates cytotoxicity.  相似文献   

9.
Carcinoembryonic antigen (CEA) and CEA family member CEACAM6 are glycophosphatidyl inositol (GPI)-anchored, intercellular adhesion molecules that are up-regulated in a wide variety of human cancers, including colon, breast, and lung. When over-expressed in a number of cellular systems, these molecules are capable of inhibiting cellular differentiation and anoikis, as well as disrupting cell polarization and tissue architecture, thus increasing tumorigenicity. The present study shows that perturbation of the major fibronectin receptor, integrin alpha5beta1, underlies some of these biological effects. Using confocal microscopy and specific antibodies, CEA and CEACAM6 were demonstrated to co-cluster with integrin alpha5beta1 on the cell surface. The presence of CEA and CEACAM6 was shown to lead to an increase in the binding of the integrin alpha5beta1 receptor to its ligand fibronectin, without changing its cell surface levels, resulting in increased adhesion of CEA/CEACAM6-expressing cells to fibronectin. More tenacious binding of free fibronectin to cells led to enhanced fibronectin matrix assembly and the formation of a polymerized fibronectin "cocoon" around the cells. Disruption of this process with specific monoclonal antibodies against either fibronectin or integrin alpha5beta1 led to the restoration of cellular differentiation and anoikis in CEA/CEACAM6 producing cells.  相似文献   

10.
Domain II mutants of Pseudomonas exotoxin deficient in translocation   总被引:16,自引:0,他引:16  
Pseudomonas exotoxin (PE) kills mammalian cells in a complex process that involves cell surface binding, internalization by endocytosis, translocation to the cytosol, and ADP-ribosylation of elongation factor 2. PE is a three-domain protein in which domain I binds to the cell surface, domain II promotes translocation into the cytosol, and domain III carries out ADP-ribosylation. To determine how translocation occurs, we have mutated all the arginine residues in domain II and found that mutations at positions 276 and 279 greatly diminished the cytotoxicity of PE and mutations 330 and 337 substantially reduced cytotoxicity. Biochemical studies indicate that after internalization into an endocytic compartment, the PE molecule undergoes a specific and saturable intracellular interaction, and this interaction is deficient in an Arg276----Gly mutant. Our data suggest that the translocation process of PE involves a specific interaction of Arg276 (and possibly Arg279, Arg330, and Arg337) with components of an intracellular compartment.  相似文献   

11.
Gelonin-based immunotoxins vary widely in their cytotoxic potency as a function of antigen density, target cell internalization and trafficking kinetics, and conjugate properties. We have synthesized novel gelonin immunotoxins using two different binding scaffold types (single-chain antibody variable fragments and fibronectin domains) targeting two different tumor antigens (carcinoembryonic antigen and EGF receptor). Constructs were characterized using an antigen-negative cell line (HT-1080), cell lines positive for each antigen (HT-1080(CEA) for carcinoembryonic antigen and A431 for EGF receptor), and a cell line positive for both antigens (HT-29). Immunotoxins exhibited K(d) values between 8 and 15 nm and showed 20-2000-fold enhanced cytotoxicity compared with gelonin (IC(50) ~ 0.25-30 nM versus 500 nM). Using quantitative fluorescence flow cytometry, we measured internalization of gelonin (via pinocytosis) and gelonin-based immunotoxins (via antigen-dependent, receptor-mediated endocytosis). Results were matched with cytotoxicity measurements made at equivalent concentration and exposures. Unexpectedly, when matched internalization and cytotoxicity data were combined, a conserved internalized cytotoxicity curve was generated that was common across experimental conditions. Considerable variations in antigen expression, trafficking kinetics, extracellular immunotoxin concentration, and exposure time were all found to collapse to a single potency curve on the basis of internalized immunotoxin. Fifty percent cytotoxicity occurred when ~ 5 × 10(6) toxin molecules were internalized regardless of the mechanism of uptake. Cytotoxicity observed at a threshold internalization was consistent with the hypothesis that endosomal escape is a common, highly inefficient, rate-limiting step following internalization by any means tested. Methods designed to enhance endosomal escape might be utilized to improve the potency of gelonin-based immunotoxins.  相似文献   

12.
We have previously described the production of a recombinant melittin-based cytolytic immunotoxin (IT), scFv-mel-FLAG, in bacterial cells. While the IT exhibited specific cytotoxicity for a human lymphoblastoid cell line, HMy2, yields from expression were low. Here, we describe a baculovirus expression system for the overexpression and secretion of scFv-mel-FLAG. A novel snake phospholipase A2 inhibitor signal peptide was used to aid in the secretion of the immunotoxin. Sf21 insect cells infected with the recombinant virus secreted soluble scFv-mel-FLAG into the culture medium from which it was purified directly on an affinity column. The final yield of scFv-mel-FLAG was estimated at 3-5 mg/L, which was an improvement of 30-fold compared to expression in the prokaryotic system. The cell binding characteristics of the recombinant IT were assessed by flow cytometry using the antigen expressing cell line HMy2. ScFv-mel-FLAG bound specifically to HMy2 cells in direct binding assays and this binding was completely inhibited in the presence of an excess of soluble antigen. Significant cytotoxicity for HMy2 cells, measured by leakage of cytosolic LDH, was also observed for the IT at a concentration of 60 pmol/10(4) cells. Cytotoxicity was concentration dependent and was specific for antigen-positive cells. Thus the baculovirus expression system, under the control of a novel secretion signal, can be used for the production of soluble and functional recombinant cytolytic immunotoxins. To our knowledge, this is the first report of expression of a recombinant immunotoxin in the baculovirus expression vector system.  相似文献   

13.
We have investigated the internalization step of an immunotoxin and its relationship with cytotoxicity, with the F(ab')2-T101(ricin-A-chain) immunotoxin, directed against the CD5 antigen expressed on leukemic CEM cells. We first demonstrated that the biological action of the conjugate was related to its entry into the cell by an energy-dependent endocytotic process. We also found that during the first hours of cell intoxication, internalization is not the rate-limiting step of immunotoxin cytotoxicity. Internalization becomes limiting in cell intoxication only when the entry rate is low. Lastly we show that ammonium chloride, which strongly enhances immunotoxin potency, acts on internalized molecules for a very short time, suggesting that this enhancer affects an early intracellular step.  相似文献   

14.
Conjugates of the single-chain ribosome-inactivating protein gelonin with ligands that bind to cell surface molecules vary greatly in their cytotoxicity. Conjugates that are not endocytosed after binding to cells exhibit low cytotoxicity similar to that of free gelonin, while conjugates that are endocytosed demonstrate enhanced cytotoxicity relative to free gelonin. However, the number of internalized gelonin molecules needed to intoxicate cells to the same degree has been found to be similar for all conjugates and for free gelonin. The intracellular concentration of gelonin has to be between 2,000-10,000 molecules/cells to achieve a surviving fraction of 0.37. Our studies revealed the presence of three distinct categories of cell surface molecules, those that are efficient in mediating endocytosis of immunotoxins, those that are only moderately efficient, and those that seem not to cause internalization of bound immunotoxins.  相似文献   

15.
A bio-nanocapsule (BNC), composed of the surface antigen (sAg) of the hepatitis B virus, is an efficient nanomachine with which to accomplish the liver-specific delivery of genes and drugs. Approximately 110 molecules of sAg are associated to form a BNC particle with an average diameter of 130 nm. The L protein is an sAg peptide composed mainly of preS and S regions. The preS region, with specific affinity for human hepatocytes, is localized in the N-terminus. The S region following the preS has two transmembrane regions responsible for the formation of particles. In this study, the fusion of emerald green fluorescent protein (EGFP) at the C-terminus of the S region was designed to deliver proteins to human hepatocytes. Truncation of the C-terminus of the S region was required to obtain sufficient expression levels in Cos7 cells. The nanoparticles that were produced delivered EGFP to human hepatoma cells, displaying the EGFP moiety outside, or enclosing it inside. However, only a single orientation characterizes the particle, so that either type of L fusion particle could be effectively and independently separated by an antibody affinity column. The dual C-terminal topologies of the L fusion particles designed in this study could be applied to various proteins for the C-terminal moiety of the L fusion proteins, depending on the character of the proteins, such as cytoplasmic proteins, as well as cytokines or ligands to cell surface receptors. We suggest that this fusion design is the most efficient way to prepare a BNC that delivers proteins to specific cells or tissues.  相似文献   

16.
The serine protease granzyme B (GrB) plays an important role in the immune defense mediated by cytotoxic lymphocytes. Recombinant derivatives of this pro-apoptotic protein fused to tumor-targeting ligands hold promise for cancer therapy, but their applicability may be limited by promiscuous binding to nontarget tissues via electrostatic interactions. Here, we investigated cell binding and specific cytotoxicity of chimeric molecules consisting of wild-type or surface-charge-modified human GrB and the natural EGFR ligand TGFα for tumor targeting. We mutated two cationic heparin-binding motifs responsible for electrostatic interactions of GrB with cell surface structures, and genetically fused the resulting GrBcs derivative to TGFα for expression in the yeast Pichia pastoris . Purified GrBcs-TGFα (GrBcs-T) and a corresponding fusion protein employing wild-type GrB (GrB-T) displayed similar enzymatic activity and targeted cytotoxicity against EGFR-overexpressing breast carcinoma cells in the presence of an endosomolytic reagent. However, unspecific binding of the modified GrBcs-T variant to EGFR-negative cells was dramatically reduced, preventing the sequestration by nontarget cells in mixed cell cultures and increasing tumor-cell specificity. Likewise, modification of the GrB domain alleviated unspecific extracellular effects such as cell detachment indicative of extracellular matrix degradation. Our data demonstrate improved selectivity and functionality of surface-charge-modified GrBcs, suggesting this strategy as a general approach for the development of optimized GrB fusion proteins for therapeutic applications.  相似文献   

17.
The inhibition of NK cell killing is mainly mediated via the interaction of NK inhibitory receptors with MHC class I proteins. In addition, we have previously demonstrated that NK cells are inhibited in a class I MHC-independent manner via homophilic carcinoembryonic Ag (CEA) cell adhesion molecules (CEACAM1)-CEACAM1 and heterophilic CEACAM1-CEA interactions. However, the cross-talk between immune effector cells and their target cells is not limited to cell interactions per se, but also involves a specific exchange of proteins. The reasons for these molecular exchanges and the functional outcome of this phenomenon are still mostly unknown. In this study, we show that NK cells rapidly and specifically acquire CEA molecules from target cells. We evaluated the role of cytotoxicity in the acquisition of CEA and demonstrated it to be mostly killing independent. We further demonstrate that CEA transfer requires a specific interaction with an unknown putative NK cell receptor and that carbohydrates are probably involved in CEA recognition and acquisition by NK cells. Functionally, the killing of bulk NK cultures was inhibited by CEA-expressing cells, suggesting that this putative receptor is an inhibitory receptor.  相似文献   

18.
目的:构建、表达和纯化带有转膜结构域Arg9的ScFv14/EGFP融合蛋白, 并对纯化产物的亲和 活性和内化作用进行研究。 方法: 将Arg9的编码序列分别重组到ScFv14/EGFP基因的5'端或3'端或二者之间,将它们分别克隆入原核表达载体pET32a,转化大肠杆菌BL21(DE3)LysS进行诱导表达和纯化,用间接ELISA方法检测表达产物与HBsAg的亲和活性,并用间接免疫荧光检测纯化蛋白的内化活性。 结果:经测序及酶切鉴定证实四种融合基因序列完全正确.SDS-PAGE和Western blot证实四种融合基因成功表达和纯化.间接ELISA检测证实四种融合蛋白均具有HBsAg结合活性,间接免疫荧光检测显示N端带有Arg9的融合蛋白有较强的内化作用,而且不内化进入HBsAg非表达的细胞。 结论:成功构建、表达和纯化了ScFv14/EGFP融合蛋白和三种带有Arg9的ScFv14/EGFP融合蛋白,纯化产物均具有与抗原HBsAg亲和的活性,N端带有Arg9的融合蛋白与靶细胞作用有较强的内化作用。  相似文献   

19.
E-peptide of pro-IGF-I was considered as biologically inactive. We have demonstrated that rainbow trout (rt) Ea4-peptide exerted biological activities in several established tumor cell lines [Chen et al., 2002; Kuo and Chen, 2002]. Here we report the activity of rtEa4-peptide in promoting attachment of human breast cancer cells (MDA-MB-231). While rtEa2-, rtEa3-, and rtEa4-peptides enhanced the attachment of MDA-MB-231 cells in a dose dependent manner, rtEa4-peptide possessed the highest activity. Antibodies specific to alpha2 and beta1 integrins significantly inhibited the attachment of cells to rtEa4-peptide coated-plates by 40%. In addition, rtEa4-peptide induced the expression of fibronectin 1 and laminin receptor genes in MDA-MB-231 cells. Blocking new protein synthesis by cycloheximide significantly reduced the attachment of MDA-MB-231 cells to rtEa4-peptide coated wells by 50%. These results suggest that rtEa4-peptide may promote cell attachment by interacting with alpha2/beta1 integrin receptors at the cell surface and by inducing the expression of fibronectin 1 and laminin receptor genes. Expression of fibronectin 1 gene induced by rtEa4-peptide in MDA-MB-231 cells was abolished by inhibitors of PI3K, PKC, Mek1/2, JNK1/2, and p38 MAPK signaling transduction molecules. These results suggested that induction of fibronectin 1 gene expression in MDA-MB-231 cells by rtEa4-peptide may be mediated via PI3K, PKC, Mek1/2, JNK1/2, and p38 MAPK signal transduction molecules.  相似文献   

20.
Extracellular heat shock protein 70 (Hsp70) exerts profound effects both in mediating tumor rejection by Hsp70-based vaccines and in autoimmunity. Further progress in this area, however, awaits the identification of the cell surface receptors for extracellular Hsp70 that mediate its immune functions. We have examined a wide range of candidate Hsp70 receptors and find significant binding through two main families of cell surface proteins, including 1) the scavenger receptor (SR) family and 2) C-type lectins of the NK family. In addition, given that the anticancer effects of Hsp70 vaccines have been shown to involve uptake of Ags by APC exposed to Hsp70-tumor Ag complexes, we have examined the ability of the receptors identified here to internalize Hsp70-peptide complexes. Our findings indicate that three members of the SR family (lectin-like oxidized low density lipoprotein receptor 1; fasciclin, epidermal growth factor-like, laminin-type epidermal growth factor-like, and link domain-containing scavenger receptor-1; and SR expressed by endothelial cells-1) are able to bind Hsp70-peptide complexes and mediate its efficient internalization. Indeed, each of the SR was able to mediate efficient uptake of Hsp70 when transfected into Chinese hamster ovary cells previously null for uptake. Curiously, Hsp70 internalization occurs independently of the intracellular domains of the SR, and Hsp70 uptake could be detected when the entire intracellular domain of lectin-like oxidized low density lipoprotein receptor 1 or SR expressed by endothelial cells-1 was truncated. The existence of a wide repertoire of cell surface Hsp70-binding structures may permit intracellular responses to extracellular Hsp70 that are cell specific and discriminate between Hsp70 family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号