首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermosensitive hydrogels that are triggered by changes in environmental temperature thus resulting in in situ hydrogel formation have recently attracted the attention of many investigators for biomedical applications. In the current work, the thermosensitive hydrogel was prepared through the mixture of chitosan (CS), poly(vinyl alcohol) (PVA) and sodium bicarbonate. The mixture was liquid aqueous solutions at low temperature (about 4 °C), but a gel under physiological conditions. The hydrogel was characterized by FTIR, swelling and rheological analysis. The effect of hydrogel composition and temperature on both the gel process and the gel strength was investigated from which possible hydrogel formation mechanisms were inferred. In addition, the hydrogel interior morphology as well as porosity of structure was evaluated by scanning electron microscopy (SEM). The potential of the hydrogels as vehicles for delivering bovine serum albumin (BSA) were also examined. In this study, the physically crosslinked chitosan/PVA gel was prepared under mild conditions without organic solvent, high temperature or harsh pH. The viscoelastic properties, as investigated rheologically, indicate that the gel had good mechanical strength. The gel formed implants in situ in response to temperature change, from low temperature (about 4 °C) to body temperature, which was very suitable for local and sustained delivery of proteins, cell encapsulation and tissue engineering.  相似文献   

2.
Defect free mats containing a cationic polysaccharide, chitosan derivative such as N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (HTCC), have been prepared using electrospinning of an aqueous solution of poly(vinyl alcohol) (PVA)-HTCC blends. HTCC, a water-soluble derivative of chitosan, was synthesized via the reaction between glycidyl-trimethylammonium chloride and chitosan. Solutions of PVA-HTCC Blends were electrospun. The morphology, diameter and structure of the produced electrospun nanofibres were examined by scanning electron microscopy (SEM). The average fibre diameter was in the range of 200-600 nm. SEM images showed that the morphology and diameter of the nanofibres were mainly affected by weight ratio of the blend and applied voltage. The results revealed that increasing HTCC content in the blends decreases the average fibre diameter. These observations were discussed on the basis of shear viscosities and conductivities of the spinning solutions. Microbiological assessment showed that the PVA-HTCC mats have a good antibacterial activity against Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli.  相似文献   

3.
Lixin Shi 《Molecular simulation》2018,44(17):1363-1370
Molecular dynamics (MD) simulations have been performed on the physically crosslinking poly(vinyl alcohol) (PVA) hydrogel to study the deformation mechanisms under uniaxial tensile conditions. The distributions of hydroxyl oxygens and dihedral angle and the number of hydrogen bonds have been analysed to study the structure of the hydrogel. The water content and temperature dependency of mechanical properties have been investigated. The energy contributions from the partially united atom potential have been calculated as a function of strain. It is found that the stress–strain curve comprises toe region, linear region and yield and failure region which is close to most biomaterials. In the toe and yield region, all the contributions to the internal energy change a little. However, in the linear region, the bond stretching and angle bending energy increase rapidly and mainly dominate the region, and the energy increases more rapidly with the increasing water content but the decreasing temperature. The degree of crosslinking decreases with the increasing deformation. The polymer chains occur significant torsional activity in the toe region. Hydrogen bonds are stable in the toe and yield region, but the hydrogen bonds between hydroxyl groups and waters decrease in the linear region.  相似文献   

4.
The compatibility of chitosan (CS) and poly(vinyl pyrrolidone) was investigated by molecular dynamic (MD) simulations using the Flory–Huggins theory. The specific interactions in blends were studied by the radial distribution function (RDF). The Flory–Huggins interaction parameter, χ, was calculated at 298 K to assess the blend compatibility at different component ratios in the polymers. Miscibility was observed for blends with more than 50% of CS in the molar fraction, while immiscibility was prevalent at the molar fraction of CS between 10 and 50% of CS. Miscibility between poly(N-vinyl-2-pyrrolidone) (PVP) and CS polymers is attributed to the hydrogen bond formation of the –C = O group of PVP and the –CH2OH groups of CS. This was further confirmed by MD simulations of RDFs for groups or atoms that are involved in interactions. These results are correlated well to obtain more realistic information on interactions involved as a function of blend composition.  相似文献   

5.
Two stage extrusion of plasticized pectin/poly(vinyl alcohol) blends   总被引:1,自引:0,他引:1  
Blends of pectin with starch (high amylose and normal), poly(vinyl alcohol) (PVOH), and glycerol were extruded in a twin screw extruder, pelletized, and then further processed into blown film and extruded sheet using a single screw extruder. The samples were analyzed using tensile measurements, dynamic mechanical analysis, and scanning electron microscopy. PVOH levels of 24% or greater were necessary to successfully make blown film, while extruded sheet could be made at a level of 16% PVOH. Tensile strength and initial modulus of the extruded sheets were slightly higher in the machine direction than in the cross direction, while the reverse was true for elongation to break. For the blown films tensile strength tended to be higher in the transverse direction than in the machine direction, while the reverse was seen for initial modulus. Increased levels of PVOH led to increases in tensile strength and elongation to break, while initial modulus was decreased. Morphology as determined by SEM visually indicated stretching in the transverse direction of the blown films. The second stage extrusion appeared to promote -helix formation in the high amylose starch.  相似文献   

6.
The aim of this work was to prepare a carrageenan-g-poly(vinyl alcohol) (CG-g-PVA) polymer using potassium persulphate as an initiator. The effect of different ratios of the polymer blends on the parameters of the grafted polymer was investigated. The grafting ratio decreased with an increase of the CG content in the graft copolymer. The resulting CG-g-PVA was characterized by ATR-FTIR, tensile strength, elongation at break, swelling ratio, contact angle and biodegradation in soil. From the ATR-FTIR the 3,6-anhydride-galactose of the CG showed a peak at 927 cm−1 that was absent in the CG-g-PVA and the ether linkage of PVA-g-CG between the hydroxyl group of PVA and the 3,6-anhydride-galactose of CG showed a peak at 1089 cm−1 in the graft copolymer. The tensile strength and elongation at break decreased with an increase of the CG due to its phase separation. The highest tensile strength was observed at 2:8 CG/PVA. In addition, the swelling ratio decreased and the contact angle increased as a function of the increase of the CG in the grafted copolymer. The best ratio of CG-g-PVA was 2:8 CG/PVA. This graft copolymer was easily biodegraded in natural soil.  相似文献   

7.
Hog pancreas lipase was covalently attached to the beads of poly(vinyl alcohol)-cryogel – a macroporous hydrogel prepared by means of freeze-thaw technique. The immobilized biocatalyst thus obtained was examined in the reaction of enantioselective hydrolysis of the ethyl ester of N-benzylidene derivative of DL-phehylalanine in the medium of acetonitrile (contained 5 vol.% of water without any buffers). Eighty-three %-enantiomeric excess of the l-amino acid was reached after 144 h. Virtually the same result was obtained in the repeated use of the same immobilized biocatalyst after its 6-months-storing in a refrigerator.  相似文献   

8.
An addition of catalase or peroxidase into an agar plate containing poly(vinyl alcohol) (PVA), was effective for the isolation of PVA-degrading microorganisms. A Gram-negative bacterium, strain TK-2 (-group of proteobacteria), rapidly degraded a high molecular weight PVA to low molecular weight material after 1 day thereby producing oligomers of PVA as shown by gel permeation chromatography. Conversely, Sphingomonas strain TJ-7 did not produce any PVA oligomers, suggesting that the strain TJ-7 degraded PVA from the terminal ends of the molecules, whereas the strain TK-2 cleaved PVA at random.  相似文献   

9.
An esterase catalyzing the hydrolysis of acetyl ester moieties in poly(vinyl alcohol) was purified 400-fold to electrophoretic homogeneity from the cytoplasmic fraction of Pseudomonas vesicularis PD, which was capable of assimilating poly(vinyl alcohol) as the sole carbon and energy source. The purified enzyme was a homodimeric protein with a molecular mass of 80 kDa and the isoelectric point was 6.8. The pH and temperature optima of the enzyme were 8.0 and 45°C. The enzyme catalyzed the hydrolysis of side chains of poly(vinyl alcohol), short-chain p-nitrophenyl esters, 2-naphthyl acetate, and phenyl acetate, and was slightly active toward aliphatic esters. The enzyme was also active toward the enzymatic degradation products, acetoxy hydroxy fatty acids, of poly(vinyl alcohol). The K m and V max of poly(vinyl alcohol) (degree of polymerization, 500; saponification degree, 86.5-89.0 mol%) and p-nitrophenyl acetate were 0.381% (10.6 mM as acetyl content in the polymer) and 2.56 μM, and 6.52 and 12.6 μmol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate at a concentration of 5 mM, which indicated that the enzyme was a serine esterase. The pathway for the metabolism of poly(vinyl alcohol) is also discussed.  相似文献   

10.
11.
Summary An actinomycete strain, which could produce an extracellular poly(vinyl alcohol) (PVA)-degrading enzyme, was isolated from a PVA-contaminated soil sample using PVA as the sole carbon source. The strain was identified as Streptomyces venezuelae according to the whole-nucleotide-sequence analysis of 16S rDNA, the morphological and the physiological characteristics. The strain produced 120 U/l extracellular PVA-degrading enzyme when PVA was used as the sole carbon source. When glucose was used as the sole carbon source, however, the extracellular enzyme activity was very low (12 U/l). This is the first report showing that an actinomycete strain can produce a PVA-degrading enzyme.  相似文献   

12.
Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.  相似文献   

13.
A novel amperometric ethanol biosensor was constructed using alcohol dehydrogenase (ADH) physically immobilized within poly(vinyl alcohol)–multiwalled carbon nanotube (PVA–MWCNT) composite obtained by a freezing–thawing process. It comprises a MWCNT conduit, a PVA binder, and an ADH function. The measurement of ethanol is based on the signal produced by β-nicotinamide adenine dinucleotide (NADH), the product of the enzymatic reaction. The homogeneity of the resulting biocomposite film was characterized by atomic force microscopy (AFM). The performance of the PVA–MWCNT–ADH biocomposite modified glassy carbon electrode was evaluated using cyclic voltammetry and amperometry in the presence of NADH and in the presence of ethanol. The ethanol content in standard solutions was determined and a sensitivity of 196 nA mM−1, a linear range up to 1.5 mM, and a response time of about 8 s were obtained. These characteristics allowed its application for direct detection of ethanol in alcoholic beverages: beer, red wine, and spirit.  相似文献   

14.
Poly(vinyl alcohol)/hydroxylapatite(PVA/HA)composite hydrogel was prepared by repeated freezing and thawing.Thewater loss properties of the resultant hydrogel were investigated by using optical microscope.Long time immersion tests ofPVA/HA composite hydrogel were carried out in the diluted calf serum solution to study the change laws of swelling propertieswith the freezing-thawing cycles and HA content.The micro-morphologies of PVA/HA composite hydrogel after long timeimmersion were observed by means of the high-accuracy 3D profiler.The results show that the swelling process of PVA/HAcomposite hydrogel is the converse process of its water loss.Long time swelling ratio curves of PVA/HA composite hydrogel inthe calf serum solution are manifested as four stages of quick increase,decrease,slow decrease and stable balance,and itsequilibrium swelling ratio decreases with the increase of freezing-thawing cycles and HA content.It is revealed that the networkstructure of the composite hydrogel immersed for a long period is significantly improved with the increase of HA content.Perfect network structures of PVA/HA composite hydrogel as well as full and equilibrium tissues after swelling equilibrium areobtained when the HA content is 3% and the number of freezing-thawing cycles is 7.  相似文献   

15.
聚乙烯醇降解酶研究进展   总被引:10,自引:0,他引:10  
聚乙烯醇是一种广泛应用的水溶性聚合物,尤其作为纺织浆料。由于其生物难降解性,对水体会造成较大的污染,因此得到较多的关注。对聚乙烯醇生物处理的研究主要集中在生物降解酶和生物降解机理上,特别是随着对环境友好的酶加工纤维技术的不断发展,利用聚乙烯醇降解酶进行纺织脱浆已引起较大的兴趣。已发现的聚乙烯醇降解酶主要包括:聚乙烯醇氧化酶(仲醇氧化酶)、聚乙烯醇脱氢酶、β双酮水解酶(氧化型聚乙烯醇水解酶)。聚乙烯醇降解酶催化聚乙烯醇的生物降解主要分为两步进行。聚乙烯醇酶脱浆技术不仅节省了脱浆能耗,而且提高了脱浆废水的生物可降解性。  相似文献   

16.
Polymer-based tissue adhesives composed of poly(vinyl alcohol) acetoacetate (PVOH acac) and cross-linking amines were investigated for their effects on cell survival and inflammatory cell activation using in vitro mouse cell cultures. Cytotoxicity of tissue adhesives was evaluated by placing adhesives in direct contact with 3T3 fibroblast cells. Tissue adhesives formulated from PVOH acac and 3-aminopropyltrialkoxysilane (APS) were non-cytotoxic to fibroblasts; adhesives formulated from PVOH acac and aminated poly(vinyl alcohol) (PVOH amine) were also non-cytotoxic to fibroblasts. In contrast, a commercial adhesive composed of 2-octyl cyanoacrylate was highly cytotoxic to fibroblasts. The inflammatory potential of tissue adhesives was evaluated by exposing J774 macrophage cells to adhesives, and measuring TNF-α release from macrophages. PVOH acac-based tissue adhesives did not elicit inflammatory TNF-α release from macrophages. These results suggest that PVOH acac-based tissue adhesives are non-cytotoxic and non-inflammatory. Such tissue adhesives represent a promising technology for a variety of medical applications, including surgical wound closure and tissue engineering, and the results are also significant in the design of in vitro cell culture systems to study biomaterials.  相似文献   

17.
PVA-cryogels entrapping about 109 cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well. A maximum oxidation rate of 3.1 g Fe2+ l–1 h–1 was achieved at the dilution rate of 0.4 h–1 or higher, while no obvious precipitate was determined at this time. In addition, cell-immobilized PVA-cryogels packed in bioreactor maintained their oxidative ability for more than two months under non-sterile conditions. Nomenclature: C A0 – Concentration of Fe2+ in feed stream (g l–1) C A – Concentration of Fe2 + in outlet stream (g l– 1) D – Dilution rate of the packed-bed bioreactor (h–1) F – Volumetric flow rate of iron solution (l h–1) F A0 – Mass flow rate of Fe2+ in the feed stream (g h–1) K – Kinetic constant (l l–1 h–1) r A – Oxidation rate of Fe2+ (g l–1 h–1) V – Volume of packed-bed bioreactor (l) X A – Conversion ratio of Fe2+ (%)  相似文献   

18.
Khanh D  Quan L  Zhang W  Hira D  Furukawa K 《Bioresource technology》2011,102(24):11147-11154
The feasibility of treating low-strength wastewater with an up-flow anaerobic sludge blanket (UASB) reactor, using a poly(vinyl alcohol)-gel carrier, at various temperatures and hydraulic retention times (HRTs) was examined. The temperature was decreased from 35°C to 25°C and then to 15°C. The HRT was reduced from 2.0 h to 0.22 h. The COD removal rate reached 28 kg-COD m(-3)d(-1) at 35°C, 16 kg-COD m(-3)d(-1) at 25°C, and 6 kg-COD m(-3)d(-1) at 15°C. The COD removal rate was reduced by half for each temperature reduction of 10°C.  相似文献   

19.
Poly(vinyl alcohol) cryogels are prepared from aqueous solutions of the polymer by freezing and thawing and are employed as matrices for cell immobilization. The swelling behavior of these macroporous gel carriers in pure water and in solutions of certain compounds (salts, amino acids, and glucose) was studied to elucidate the osmotic properties of the cryogels during long-term exposure to aqueous media. It was shown that after the initial sol fraction was washed out, the residual gel matrix possessed high stability even at extreme pH conditions (acid or alkali concentration up to 1.0 mol l−1) or in the presence of strong chaotropic salts such as sodium rhodanide. Although the macroporous supermolecular structure of the carriers under consideration underwent certain changes as a result of aging processes during prolonged washing of the gel, the high porous morphology of the material was retained.  相似文献   

20.
Partially crosslinked and sulfonated poly(vinyl alcohol) (s-PVA) membranes were prepared as ion-conductive matrices of Ionic Polymer-Metal Composite (IPMC) and a new IPMC based on the s-PVA membrane was fabricated via an electroless plating procedure of platinum. PVA was reacted with sulfosuccinic acid (SSA) as a crosslinking agent with a sulfonic group and 4-(2-hydroxyethyl)piperazine-1-propanesulfonic acid (EPPS) as a side chain with a sulfonic group. The crosslinked s-PVA membranes were characterized using a FT-IR spectroscope and a scanning electron microscope-combined energy-dispersive X-ray spectrometer and were assessed in terms of water absorption, proton conductivity, and the feasibility of electroless plating, Among the prepared ionomers, the s-PVA membrane obtained at 20 wt.% SSA and 10 wt.% EPPS (S20E10 membrane) registered the highest proton conductivity of 2.9 × 10~(-2) S·m~(-1), which corresponds to one third of that of Nafion series, and only the S20E10 membrane was successfully plated via the electroless plating method without any crack and broken part. The s-PVA-based IPMC showed the one-directional displacement with 1-minute-long time-lapse comparable to typical Nafion-based IPMCs. However, the displacement under an AC potential was very limited due to its slow deformation response and the actuation performance was severely varied with actuation time including the short service life of several minutes in air. The short and variable actuation of the s-PVA-based IPMC was attributed to its large variation of surface and ionic resistances during air-operation, which is induced by the low ratio of bound to free water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号