首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contusion injury is produced experimentally in anaesthetised monkeys by weight drop method. A group of animals having laminectomy alone served as sham controls. Drugs were administered 30 min after injury initially. Naloxone and nifedipine were administered as single dose administration immediately after injury. Dipyridamole and DMSO were administered daily for a period of 1 week. Acetylcholinesterase (AchE) was estimated in 2 spinal tissue segments, S1-at the site of injury and S2-the segment above the site of injury, at the end of 1 week after sacrificing the animals. Contusion injury produced significant decrease in specific activity of AchE in the traumatised segment of the experimental animals. The non-traumatised adjacent segment did not show any significant change. Nifedipine, naloxone and DMSO produced a decrease in AchE activity in S1 and S2 segments. Monkeys developed paraplegia after contusion injury. A score 2+ was observed after 1 week as compared to the score of 4+ of sham controls. Single dose administration of naloxone seemed to reverse the motor deficit by getting a score of 3+; other drugs did not produce any beneficial effect on motor deficit.  相似文献   

2.
Specific activity of acetylcholinesterase has been shown to be decreased following experimental spinal cord trauma (200 gcm) in primates. The decrease in activity was evident at 8, 24, 48 hr and 1 week after injury to the traumatized segments of spinal cord.  相似文献   

3.
Sharma HS  Sjöquist PO 《Amino acids》2002,23(1-3):261-272
Summary.  The involvement of the excitatory amino acid glutamate and the inhibitory amino acid gamma-amino butyric acid (GABA) in the pathophysiology of spinal cord injury is not known in details. This investigation is focused on the role of glutamate and GABA in a rat model of spinal cord trauma using immunohistochemistry. Spinal cord injury produced by a longitudinal incision of the right dorsal horn of the T10–11 segments resulted in profound edema and cell damage in the adjacent T9 segment at 5 h. Pretreatment with H-290/51 (50 mg/kg, p.o.), a potent antioxidant compound, effectively reduced the blood-spinal cord barrier (BSCB) permeability, edema formation and cell injury following trauma. At this time, untreated traumatised rats exhibited a marked increase in glutamate immunoreactivity along with a distinct decrease in GABA immunostaining in the T9 segment. These changes in glutamate and GABA immunoreactivity in traumatised rats were considerably attenuated by pretreatment with H-290/51. These results suggest that (i) oxidative stress contributes to alterations in glutamate and GABA in spinal cord injury, (ii) glutamate and GABA are important factors in the breakdown of the BSCB, edema formation and cell changes, and (iii) the antioxidant compound H-290/51 has a potential therapeutic value in the treatment of spinal cord injuries. Received July 3, 2001 Accepted August 6, 2001 Published online July 31, 2002  相似文献   

4.
Alterations in the expression of growth-associated protein 43 (GAP-43) were examined in lower urinary tract micturition reflex pathways 6 or 8 weeks following complete spinal cord transection (~ T9). In control animals, expression of GAP-43 was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure; (2) the corticospinal tract; (3) the dorsal horn; and (4) the regions of the intermediolateral cell column (L1-L2) and the sacral parasympathetic nucleus (L6-S1); and (5) in the lateral collateral pathway of Lissauer in L6-S1 spinal segments. Densitometry analysis has demonstrated significant increases (p 0.001; 1.3-6.4-fold increase) in GAP-43-immunoreactivity (IR) in these regions of the rostral lumbar (L1-L2) and caudal lumbosacral (L6-S1) spinal cord 6 weeks following spinal cord injury. Changes in GAP-43-IR were restricted to the L1-L2 and L6-S1 segments that are involved in lower urinary tract reflexes. Changes in GAP-43-IR were not observed at the L5 segmental level except for an increase in GAP-43-IR in the superficial, dorsal horn at 6 weeks post-injury. In all segments examined, GAP-43-IR was decreased (2-5-fold) in the corticospinal tract (dorsal division) 6 and 8 weeks following spinal cord injury. Eight weeks following spinal cord injury, changes in GAP-43-IR had returned to control levels except for the persistence of increased GAP-43-IR in the region of the sacral parasympathetic nucleus and the lateral collateral pathway in the S1 spinal segment. Alterations in GAP-43-IR following chronic spinal cord injury may suggest a reorganization of bladder afferent projections and spinal elements involved in urinary bladder reflexes consistent with alterations in urinary bladder function (hyperreflexia) observed in animals following spinal cord injury above the lumbosacral spinal cord.  相似文献   

5.
Alterations in the expression of growth-associated protein 43 (GAP-43) were examined in lower urinary tract micturition reflex pathways 6 or 8 weeks following complete spinal cord transection (approximately T9). In control animals, expression of GAP-43 was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure; (2) the corticospinal tract; (3) the dorsal horn; and (4) the regions of the intermediolateral cell column (L1-L2) and the sacral parasympathetic nucleus (L6-S1); and (5) in the lateral collateral pathway of Lissauer in L6-S1 spinal segments. Densitometry analysis has demonstrated significant increases (p < or =0.001; 1.3-6.4-fold increase) in GAP-43-immunoreactivity (IR) in these regions of the rostral lumbar (L1-L2) and caudal lumbosacral (L6-S1) spinal cord 6 weeks following spinal cord injury. Changes in GAP-43-IR were restricted to the L1-L2 and L6-S1 segments that are involved in lower urinary tract reflexes. Changes in GAP-43-IR were not observed at the L5 segmental level except for an increase in GAP-43-IR in the superficial, dorsal horn at 6 weeks post-injury. In all segments examined, GAP-43-IR was decreased (2-5-fold) in the corticospinal tract (dorsal division) 6 and 8 weeks following spinal cord injury. Eight weeks following spinal cord injury, changes in GAP-43-IR had returned to control levels except for the persistence of increased GAP-43-IR in the region of the sacral parasympathetic nucleus and the lateral collateral pathway in the S1 spinal segment. Alterations in GAP-43-IR following chronic spinal cord injury may suggest a reorganization of bladder afferent projections and spinal elements involved in urinary bladder reflexes consistent with alterations in urinary bladder function (hyperreflexia) observed in animals following spinal cord injury above the lumbosacral spinal cord.  相似文献   

6.
The purpose of this study is to evaluate, in an experimental model of spinal cord injury (SCI), the presence of apoptotic cell death after trauma and if early administration of a single bolus of methylprednisolone (MP) influences apoptosis in the zone of trauma and in adjacent spinal cord segments. For this study, a total of 96 adult female Wistar rats were subjected to spinal contusion at the T6-T8 level, producing immediate paraplegia. Forty-eight animals (treated group) received a single intraperitoneal injection of MP, at a dose of 30 mg/kg body weight, 10 minutes later. Cells undergoing apoptosis were detected by means of immunohistochemical labeling with the monoclonal antibody Apostain (anti-ssDNA MAb F7-26), in the injured spinal cord tissue, both in the zone of the lesion and in the adjacent spinal segments (rostral and caudal zones), 1, 4, 8, 24 and 72 hours and 1 week after injury. Apoptosis was detected in neurons and glial cells in the zone of the lesion 1 hour after trauma, with a pattern that showed no changes 4 hours later. Between 4 and 8 hours postinjury, the number of apoptotic cells increased, after which it decreased over the following days. In the adjacent spinal segments, apoptotic cells were detected 4 hours after trauma, and increased progressively over the remainder of the study, the number of apoptotic cells being similar in the lesion zone and in rostral and caudal zones one week after injury. When the group of MP-treated animals was considered, significant decreases in the number of apoptotic cells were detected in the lesion zone 24 hours after injury, and in the rostral and caudal zones, at 72 hours and at 1 week after trauma. These findings show that early administration of a single bolus of MP decreases apoptotic cell death after SCI, supporting the utility of MP in reducing secondary damage in injured spinal cord tissue.  相似文献   

7.
Nyberg F  Sharma HS 《Amino acids》2002,23(1-3):231-239
Summary.  The neuroprotective efficacy of growth hormone on a focal spinal cord trauma induced alteration in the blood-spinal cord barrier (BSCB) and edema formation was examined in a rat model. Under Equithesin anaesthesia, one segment laminectomy was done over the T10–11 segments. Spinal cord injury was produced by making an incision into the right dorsal horn of the T10–11 segments (2 mm deep and 4 mm long). The animals were allowed to survive 5 h after injury. Highly purified rat growth hormone [rGH, 25 μl of a 1 μg/ml solution) was applied over 10 sec topically on the exposed surface of the spinal cord 30 min before injury. The identical doses of the rGH were repeated 0 min, 30 min, 60 min, 120 min, 180 min and 240 min following injury. Saline (0.9% NaCl) treated traumatised rats at identical intervals served as controls. Traumatised rats treated with saline exhibited marked edema formation and extravasation of Evans blue and [125]Iodine tracers in the spinal cord. At the ultrastructural level, perivascular edema and exudation of lanthanum across the endothelial cells was quite frequent in the spinal cord. Pretreatment with rGH significantly attenuated the edema formation and the extravasation of tracers in the spinal cord. In these rats, perivascular edema and infiltration of lanthanum across the endothelial cells was not much evident. These observations show that the rGH has the capacity to reduce the early manifestations of microvascular permeability disturbances and edema formation following trauma and further suggest a possible therapeutic potential of the hormone for the treatment of spinal cord injuries. Received July 3, 2001 Accepted August 6, 2001 Published online July 31, 2002  相似文献   

8.
In the present study, we examined the mechanisms of hydrogen-rich saline, a reported therapeutic antioxidant, in the treatment of acute spinal cord contusion injury. Male Sprague-Dawley rats were used to produce a standardized model of contuses spinal cord injury (125 kdyn force). Hydrogen-rich saline was injected intraperitoneally (5 ml/kg) immediately, and at 24 and 48 h after injury. All rats were sacrificed at 72 h after spinal cord injury (SCI). Apoptotic cell death, oxidative stress, inflammation, level of Brain derived neurotrophic factor (BDNF) were evaluated. In addition, locomotor behavior was assessed using the Basso, Beattice and Bresnahan (BBB) scale. We observed that administration of hydrogen-rich saline decreased the number of apoptotic cells, suppressed oxidative stress, and improved locomotor functions. Hydrogen-rich saline increased the release of BDNF. In conclusion, hydrogen-rich saline reduced acute spinal cord contusion injury, possibly by reduction of oxidative stress and elevation of BDNF.  相似文献   

9.
The adult mammalian spinal cord has limited regenerative capacity in settings such as spinal cord injury (SCI) and multiple sclerosis (MS). Recent studies have revealed that ependymal cells lining the central canal possess latent neural stem cell potential, undergoing proliferation and multi-lineage differentiation following experimental SCI. To determine whether reactive ependymal cells are a realistic endogenous cell population to target in order to promote spinal cord repair, we assessed the spatiotemporal dynamics of ependymal cell proliferation for up to 35 days in three models of spinal pathologies: contusion SCI using the Infinite Horizon impactor, focal demyelination by intraspinal injection of lysophosphatidylcholine (LPC), and autoimmune-mediated multi-focal demyelination using the active experimental autoimmune encephalomyelitis (EAE) model of MS. Contusion SCI at the T9–10 thoracic level stimulated a robust, long-lasting and long-distance wave of ependymal proliferation that peaked at 3 days in the lesion segment, 14 days in the rostral segment, and was still detectable at the cervical level, where it peaked at 21 days. This proliferative wave was suppressed distal to the contusion. Unlike SCI, neither chemical- nor autoimmune-mediated demyelination triggered ependymal cell proliferation at any time point, despite the occurrence of demyelination (LPC and EAE), remyelination (LPC) and significant locomotor defects (EAE). Thus, traumatic SCI induces widespread and enduring activation of reactive ependymal cells, identifying them as a robust cell population to target for therapeutic manipulation after contusion; conversely, neither demyelination, remyelination nor autoimmunity appears sufficient to trigger proliferation of quiescent ependymal cells in models of MS-like demyelinating diseases.  相似文献   

10.
We provide the first data that cathepsin B (Cath B), a lysosomal cysteine protease, is up-regulated following contusion-spinal cord injury (SCI). Following T12 laminectomy and moderate contusion, Cath B mRNA and protein expression profiles were examined from 2 to 168 h post-injury in rats using real-time PCR and immunoblots, respectively. Contusion injury significantly increased [mRNA]Cath B in the injury site and adjacent segments over sham injury levels. While the largest [mRNA]Cath B induction (20-fold over naive) was seen in the injury site, the caudal segment routinely yielded [mRNA]Cath B levels greater than 10-fold over naive. Interestingly, sham injury animals also experienced mRNA induction at several time points at the injury site and in segments rostral and caudal to the injury site. Contusion injury also significantly elevated levels of Cath B proenzyme protein (37 kDa) over sham injury in the injury site (48, 72 and 168 h post-injury). Furthermore, significant protein increases of single and double chain Cath B (both active forms) occurred at the injury site at 72 and 168 h post-injury. Similar significant increases in Cath B protein levels were seen in areas adjacent to the injury site. The induction of Cath B mRNA and protein expression following contusion injury is previously undescribed and suggests that Cath B may potentially be involved in the secondary injury cascade, perhaps for as long as 1 week post-injury.  相似文献   

11.
Changes in the level of cyclic 3',5'-guanosine monophosphate (cGMP) were studied one day after a surgically induced spinal cord constriction performed at the Th7 segment level in the dorsal, lateral and ventral white matter columns and in the non-compartmentalized white matter of Th5-Th6 segments, i.e., above the site of the spinal cord constriction and in Th8-Th9 segments, located below the spinal cord constriction. The midthoracic spinal cord constriction caused a significant decrease in the level of cGMP in the ventral column of Th5-Th6 segments and a significant increase in the lateral column of Th8-Th9 segments. The level of cGMP in the dorsal column, located either rostrally or caudally to the site of the spinal cord injury, remained unchanged. In addition, no significant changes in the level of cGMP were found in the non-compartmentalized white matter of Th5-Th6 and Th8-Th9 segments in response to constriction of the Th7 segment.  相似文献   

12.
To investigate the possible role of vascular endothelial growth factor (VEGF) in the injured spinal cord, we analyzed the distribution and time course of the two tyrosine kinase receptors for VEGF, Flt-1 and Flk-1, in the rat spinal cord following contusion injury using a weight-drop impactor. The semi-quantitative RT-PCR analysis of Flt-1 and Flk-1 in the spinal cord showed slight upregulation of these receptors following spinal cord injury. Although mRNAs for Flt-1 and Flk-1 were constitutively expressed in neurons, vascular endothelial cells, and some astrocytes in laminectomy control rats, their upregulation was induced in association with microglia/macrophages and reactive astrocytes in the vicinity of the lesion within 1 day in rats with a contusion injury and persisted for at least 14 days. The spatiotemporal expression of Flt-1 in the contused spinal cord mirrored that of Flk-1 expression. In the early phase of spinal cord injury, upregulation of Flt-1 and Flk-1 mRNA occurred in microglia/macrophages that infiltrated the lesion. In addition, the expression of both receptors increased progressively in reactive astrocytes within the vicinity of the lesion, predominately in the white matter, and almost all reactive astrocytes coexpressed Flt-1 or Flk-1 and nestin. These results suggest that VEGF may be involved in the inflammatory response and the astroglial reaction to contusion injuries of the spinal cord via specific VEGF receptors.  相似文献   

13.
Reactive oxygen species and resultant lipid peroxidation (LPO) have been associated with central nervous system trauma. Acrolein (2-propenal) and 4-hydroxynonenal (HNE) are the most toxic byproducts of LPO, with detrimental effects in various types of cells. In this study, we used immunoblotting techniques to detect the accumulation of protein-bound acrolein and HNE. We report that protein-bound acrolein and HNE were significantly increased in guinea pig spinal cord following a controlled compression injury. The acrolein and HNE protein-adducts increased in the damaged spinal cord as early as 4 h after injury, reached a peak at 24 h after injury, and remained at a significantly high level up to 7 days after injury. Such increase of protein adducts was also observed in the adjacent segments of the injury site beginning at 24 h post injury. These results suggest that products of lipid peroxidation, especially acrolein, may play a critical role in the secondary neuronal degeneration, which follows mechanical insults.  相似文献   

14.
Neutrophil infiltration has been implicated in the secondary destructive pathomechanisms after initial mechanical injury to the spinal cord. Tissue myeloperoxidase (MPO) activity has been shown to be an exclusive indicator of the extent of post-traumatic neutrophil infiltration. We have studied the effect of magnesium sulphate on MPO activity after spinal cord injury in rats. Rats were randomly allocated into 5 groups. Group 1 was control and normal spinal cord samples were obtained after clinical examination. Forty g-cm contusion injury was introduced to Group 2. Group 3 was vehicle, 1 ml of physiological saline was injected post-trauma. Group 4 was given 30 mg/kg methylprednisolone sodium succinate (MPSS) immediately after trauma. Group 5 was given 600 mg/kg magnesium sulphate immediately after trauma. Animals were examined by inclined plane technique of Rivlin and Tator 24 h after trauma. Spinal cord samples obtained following clinical evaluations. Magnesium sulphate treatment improved early functional scores and decreased MPO activity. These findings revealed that magnesium sulphate treatment possesses neuroprotection on early clinical results and on neutrophil infiltration after acute contusion injury to the rat spinal cord.  相似文献   

15.
Effect of methylprednisolone sodium succinate (MPSS) and its comparison with dexamethasone in experimentally induced acute spinal cord compression in adult rats was studied. The rats were divided into group A (control) and group B, which was subdivided into B1, B2, B3 where MPSS was given after 1, 8 and 24 hr and B4 where dexamethasone was given after 1 hr of cord injury respectively. Proper neurological evaluation was done with mobility, running and climbing score. Recovery index was evaluated for 7 days. After sacrificing the rats, spinal cord was observed histopathologically. Mean recovery index and microscopic findings based on hemorrhage in gray and white matter, neuronal degeneration, hematomyelia and edema in white matter were recorded. The results suggested that MPSS was effective in promoting post-traumatic clinical and histological recovery and to a greater extent, when given 1 hr after trauma. MPSS is more effective than dexamethasone in reducing edema when both are given after interval of 1 hr.  相似文献   

16.
Loss of Ascorbic Acid from Injured Feline Spinal Cord   总被引:2,自引:2,他引:2  
Feline spinal cord contains 0.97 mM ascorbic acid, as measured by the dinitrophenylhydrazine method. Greater than 90% is maintained in the reduced form. When functioning normally, the CNS conserves its ascorbic acid with a turnover rate of 2% per h. Following contusion injury severe enough to produce paraplegia, ascorbic acid is rapidly lost from injured spinal tissue. Thus, ascorbic acid is decreased 30% by 1 h and 50% by 3 h following injury. Oxidized ascorbic acid is increased at 1, but not 3, h following impact. As a consequence of its many functions in CNS, loss of ascorbic acid may contribute to derangements in spinal cord function following injury.  相似文献   

17.
Differential assembly of N-methyl-D-aspartate (NMDA) receptor subunits determines their functional characteristics. Using in situ hybridization, we found a selective increase of the subunits NR1 and NR2A mRNA at 24 h in ventral motor neurons (VMN) caudal to a standardized spinal cord contusion injury (SCI). Other neuronal cell populations and VMN rostral to the injury site appeared unaffected. Significant up-regulation of NR2A mRNA also was seen 1 month after SCI in thoracic and lumbar VMN. The selective effects on VMN caudal to the injury site suggest that the loss of descending innervation leads to increased NMDA receptor subunit expression in these cells after SCI, which may alter their responses to glutamate. In contrast, protein levels determined by western blot analysis show decreased levels of NR2A 1 month after SCI in whole thoracic segments of spinal cord that included the injury sites. No effects of injury were seen on subunit levels in cervical or lumbar segments. Taken together with our previous study showing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit down-regulation after injury, our data suggest that glutamate receptor composition is significantly altered after SCI. These changes need to be taken into account to properly understand the function of, and potential pharmacotherapy for, the chronically injured spinal cord.  相似文献   

18.
Summary Growth of descending noradrenaline (NA) and 5-hydroxytryptamine (5-HT) axons in the rat spinal cord during ontogenesis and following mechanical or chemical, 6-hydroxydopamine (6-OH-DA) induced, axotomy, was studied with the Falck-Hillarp histochemical fluorescence method for monoamines.The major NA and 5-HT axon bundles and terminal innervation areas are present already at birth and an essentially mature pattern of innervation is reached after two weeks.Complete degeneration of both 5-HT and NA nerves in the distal segment is obtained by a transection of the spinal cord. Sprouting of the cut monoamine fibers into the necrotic zone and scar tissue is vigorous in both immature and mature animals, but regeneration into the distal segment is very poor.Selective degeneration of the descending NA axons and terminals is obtained by a localized intraspinal 6-OH-DA injection. Thus, the 5-HT fiber systems as well as all other parts of the spinal cord are left intact. The method should therefore prove useful for evaluating the exact functional role of the NA and 5-HT neuron systems in the spinal cord.Reinnervation of the distal part of the spinal cord by new NA fibers following 6-OH-DA induced denervation is described. This process is faster in younger animals but takes place also in adult animals. The present evidence suggests that reinnervation mainly is the result of downgrowth of the axotomized fibers, but growth in the form of collateral sprouting from a few possibly surviving fibers in the distal region may also contribute. Reinnervation lead to a normal innervation pattern within 1–2 months in the various age groups.It is suggested that the poor regeneration of many spinal nerve tracts often reported in the literature following transection of the spinal cord is due to extraneuronal factors such as scar tissue and impaired circulation rather than to the nerves per se since reinnervation by NA nerves was very poor following mechanical transection but good following chemical, 6-OH-DA-induced axotomy.  相似文献   

19.
Unilateral sciatic nerve compression (SNC) or complete sciatic nerve transection (CSNT), both varying degrees of nerve injury, induced activation of STAT3 bilaterally in the dorsal root ganglia (DRG) neurons of lumbar (L4-L5) as well as cervical (C6–C8) spinal cord segments. STAT3 activation was by phosphorylation at the tyrosine-705 (Y705) and serine-727 (S727) positions and was followed by their nuclear translocation. This is the first evidence of STAT3(S727) activation together with the well-known activation of STAT3(Y705) in primary sensory neurons upon peripheral nerve injury. Bilateral activation of STAT3 in DRG neurons of spinal segments anatomically both associated as well as non-associated with the injured nerve indicates diffusion of STAT3 activation inducers along the spinal cord. Increased levels of IL-6 protein in the CSF following nerve injury as well as activation and nuclear translocation of STAT3 in DRG after intrathecal injection of IL-6 shows that this cytokine, released into the subarachnoid space can penetrate the DRG to activate STAT3. Previous results on increased bilateral IL-6 synthesis and the present manifestation of STAT3 activation in remote DRG following unilateral sciatic nerve injury may reflect a systemic reaction of the DRG neurons to nerve injury.  相似文献   

20.
Rat spinal cord contusion injury models the histopathology associated with much clinical spinal cord injury (SCI). Studies on altered gene expression after SCI in these models may identify therapeutic targets for reducing secondary injury after the initial trauma and/or enhancing recovery processes. However, complex spatial and temporal alterations after injury could complicate interpretation of changes in gene expression. To test this hypothesis, we selected six genes and studied their temporal and spatial patterns of expression at 1 h, 1, 3 and 7 days after a standardized spinal cord contusion produced by a weight drop device (10 g x 25 mm at T8). Real-time RT-PCR using TaqMan probes was employed to quantify mRNA for proteolipid protein, glyceraldehyde-3-phosphate dehydrogenase, glial fibrillary acidic protein, nestin, and the GluR2 and NR1 subunits of glutamate receptors. We found widely different temporal and spatial patterns of altered gene expression after SCI, including instances of opposing up- and down-regulation at different locations in tissue immediately adjacent to the injury site. We conclude that greater use of the reliable and extremely sensitive technique of quantitative real-time PCR for regional tissue analysis is important for understanding the altered gene expression that occurs after CNS trauma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号