首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular permeability factor (VPF) is mitogenic for bovine aortic endothelial (BAE) cells, whereas tumor necrosis factor (TNF) is cytostatic and was found to completely block the mitogenic response to VPF. In contrast to the apparently antagonistic mitogenic effects that these two factors elicit, chronic exposure of BAE cells to either VPF of TNF resulted in significant (about 3-fold) increases in the rates of hexose transport. The concentrations required for half-maximal stimulation were 2 ng/ml (40 pM) for TNF and 4 ng/ml (100 pM) for VPF. Exposure to both factors simultaneously resulted in a greater stimulation of transport (about 7-fold) than exposure to either factor alone. Northern blot analysis indicated that the amount of message for the GLUT-1/erythrocyte form of the glucose transporter was specifically increased by treatment with VPF (5-fold), TNF (25-fold), or to both cytokines together (35-fold). Expression of mRNAs for the insulin-sensitive muscle/adipose transporter (GLUT-4), brain/fetal skeletal muscle transporter (GLUT-3), or the hepatic transporter (GLUT-2) were not detected in either control or treated cells. Acute or chronic exposure to insulin (10(-9) to 10(-6) M) did not activate hexose transport in BAE cells. Thus, glucose transport in aortic endothelial cells can be up-regulated by either VPF, a growth stimulator, or by TNF, a growth inhibitor, but not by insulin. The additive effect of the two cytokines together may be important in the control of increased glucose metabolism at sites of inflammation.  相似文献   

2.
Receptor for bombesin with associated tyrosine kinase activity.   总被引:5,自引:6,他引:5       下载免费PDF全文
The neuropeptide bombesin is known for its potent mitogenic activity on murine 3T3 fibroblasts and other cells. Recently it has been implicated in the pathogenesis of small cell lung carcinoma, in which it acts through an autocrine loop of growth stimulation. Phosphotyrosine (P-Tyr) antibodies have been successfully used to recognize the autophosphorylated receptors for known growth factors. In Swiss 3T3 fibroblasts, phosphotyrosine antibodies identified a 115,000-Mr cell surface protein (p115) that became phosphorylated on tyrosine as a specific response to bombesin stimulation of quiescent cells. The extent of phosphorylation was dose dependent and correlated with the mitogenic effect induced by bombesin, measured by [3H]thymidine incorporation. Tyrosine phosphorylation of p115 was detectable minutes after the addition of bombesin, and its time course paralleled that described for the binding of bombesin to its receptor. Immunocomplexes of phosphorylated p115 and phosphotyrosine antibodies bound 125I-labeled [Tyr4]bombesin in a specific and saturable manner and displayed an associated tyrosine kinase activity enhanced by bombesin. Furthermore, the 125I-labeled bombesin analog gastrin-releasing peptide, bound to intact live cells, was coprecipitated with p115. These data strongly suggest that p115 participates in the structure and function of the surface receptor for bombesin, a new member of the family of growth factor receptors with associated tyrosine kinase activity.  相似文献   

3.
Bombesin is a potent mitogen for Swiss 3T3 cells and acts synergistically with insulin and other growth factors. We show here that addition of bombesin to quiescent Swiss 3T3 cells causes a striking increase in the levels of c-fos and c-myc mRNAs. Enhanced expression of c-fos (122 +/- 14-fold) occurred within minutes of peptide addition followed by increased expression of c-myc (82 +/- 16-fold). The concentrations of peptide required for half-maximal increase in the levels of c-fos and c-myc mRNAs were 1.0 and 0.9 nM, respectively. The peptide [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P which inhibits the binding of bombesin to its receptor and bombesin-stimulated DNA synthesis in Swiss 3T3 cells blocked the increase in c-fos and c-myc mRNA levels promoted by bombesin. Down-regulation of protein kinase C by long-term exposure to phorbol esters prevented c-fos and c-myc induction by bombesin. This and other results indicate that the induction of these proto-oncogenes by bombesin could be mediated by the coordinated effects of protein kinase C activation and Ca2+ mobilization. The marked synergistic effect between bombesin and insulin was used to assess whether the increase in the induction of c-fos and c-myc is an obligatory event in cell activation. In the presence of insulin, bombesin stimulated DNA synthesis at subnanomolar concentrations but had only a small effect on c-fos and c-myc mRNA levels. This apparent dissociation of mitogenesis from proto-oncogene induction was even more dramatic in 3T3 cells with down-regulated protein kinase C. In these cells bombesin stimulated DNA synthesis in the presence of insulin but failed to enhance c-fos and c-myc mRNA levels at comparable concentrations. Thus, the induction of c-fos and c-myc may be a necessary step in the mitogenic response initiated by ligands that act through activation of protein kinase C but the expression of these proto-oncogenes may not be an obligatory event in the stimulation of mitogenesis in 3T3 cells by mitogens that utilise other signalling pathways.  相似文献   

4.
The effect of rat submaxillary extract on the growth of rat C6 glioma cells in serum-free culture has been examined. Extracts (10-15 microgram/ml) of submaxillary glands from both male and female rats markedly enhanced the growth of serum-deprived C6 cells and, in combination with insulin, transferrin, and NIH-LH (a source of fibroblast growth factor), were able to stimulate C6 cell growth to an extent comparable to that achieved with an optimal amount of fetal calf serum. The mitogenic activity of rat submaxillary extracts was found to be heat-labile, acid-stable, and partially inactivated by protease and 2-mercaptoethanol. Under our assay conditions, biologically active preparations of purified mouse submaxillary gland epidermal growth factor (EGF) or nerve growth factor (NGF) were not mitogenic for C6 cells, nor was the mitogenic activity of rat submaxillary extracts inhibited by antiserum to these mouse submaxillary gland growth factors. These results suggest that the active component(s) of rat submaxillary extracts is unrelated to either EGF or NGF. The growth-enhancing effect also appears unrelated to esteropeptidase activity present in these extracts since the mitogenic activity was unaffected by several protease inhibitors. Moreover, two purified mouse submaxillary gland arginylesteropeptidases, EGF-binding protein and gamma-subunit of 7 S NGF, were unable to elicit a comparable growth response even when added to cell culture medium at unreasonably high concentrations. The C6 cell mitogenic activity of crude submaxillary extracts could be separated into two biologically similar components by either gel filtration on Sephadex G-100, preparative isoelectric focusing in a pH gradient of 3-10, or adsorption to DEAE-cellulose followed by elution with a sodium chloride gradient. One of the active components was acidic in nature and had an apparent molecular weight of 40,000, while the other was near neutral in charge and possessed a molecular weight of approximately 20,000. The relationship between these two C6 cell mitogenic components and the rat submaxillary gland component responsible for stimulating Balb/c-3T3 cell growth in serum-free, factor supplemented medium (McClure et al., 1979, J. Cell Biol. 83:96a) is also discussed.  相似文献   

5.
Differential screening of cDNA libraries was used to detect and prepare probes for mRNAs that are regulated in PC12 rat pheochromocytoma cells by long-term (2-week) treatment with nerve growth factor (NGF). In response to NGF, PC12 cells change from a chromaffin cell-like to a sympathetic-neuron-like phenotype. Thus, one aim of this study was to identify NGF-regulated mRNAs that may be associated with the attainment of neuronal properties. Eight NGF-regulated mRNAs are described. Five of these increase 3- to 10-fold and three decrease 2- to 10-fold after long-term NGF exposure. Each mRNA was characterized with respect to the time course of the NGF response, regulation by agents other than NGF, and rat tissue distribution. Partial sequences of the cDNAs were used to search for homologies to known sequences. Homology analysis revealed that one mRNA (increased 10-fold) encodes the peptide thymosin beta 4 and a second mRNA (decreased 2-fold) encodes tyrosine hydroxylase. Another of the increased mRNAs was very abundant in sympathetic ganglia, barely detectable in brain and adrenals, and undetectable in all other tissues surveyed. One of the decreased mRNAs, by contrast, was very abundant in the adrenals and nearly absent in the sympathetic ganglia. With the exception of fibroblast growth factor, which is the only other agent known to mimic the differentiating effects of NGF on PC12 cells, none of the treatments tested (epidermal growth factor, insulin, dibutyryl cyclic AMP, dexamethasone, phorbol ester, and depolarization) reproduced the regulation observed with NGF. These and additional findings suggest that the NGF-regulated mRNAs may play roles in the establishment of the neuronal phenotype and that the probes described here will be useful to study the mechanism of action of NGF and the development and differentiation of neurons.  相似文献   

6.
It has been shown that panaxydol (PND) can mimic the neurotrophic effect of nerve growth factor (NGF) normally secreted by Schwann cells (SC) and protect neurons against injury. To evaluate the effect of PND on hypoxia-induced SC death and expression and secretion of neurotrophic factors (NGF and brain derived neurotrophic factor (BDNF)), hypoxic SCs were cultured in vitro and then treated with PND (0-20 microM). The MTT (3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, immunocytochemistry, ELISA and RT-PCR were employed to examine the effects. We found that hypoxia resulted in a significant decrease in SCs viability (MTT: 64+/-4.7% of control group) and nearly a 3.3-fold increase of intracellular level of active caspase-3. PND (5-20 microM) treatment significantly rescued the SCs from hypoxia-induced injury (85+/-8.2%; 92+/-8.6%; 87+/-7.3%) and reduced caspase-3 activity with the maximal effect occurred at 10 microM (P<0.01), reducing to about 1.6-fold of control level. Furthermore, PND treatment also enhanced NGF and BDNF mRNA levels in hypoxic SCs and promoted protein expression and secretion. BDNF mRNA in hypoxic SCs was restored to about 90% of normal level and NGF mRNA was elevated to 1.4-fold of control after 10 microM PND treatment. These observations showed that PND protects primary cultured SCs against hypoxia-induced injury and enhances NTF-associated activities.  相似文献   

7.
We have studied the role of protein tyrosine phosphatases (PTPases) during neuronal differentiation of PC12 cells. Nerve growth factor (NGF), a well-characterized differentiating agent for these cells, led to a decrease in DNA synthesis within 24 h. This was accompanied by a 2- to 3-fold increase in the activity of PTPases, measured as the dephosphorylation of polyacidic or polybasic substrates phosphorylated on tyrosine. PTPase activation was independent of cell density and proportional to NGF concentration, with a half-maximal effect occurring at 0.35 nM. High-performance liquid chromatography size exclusion chromatography revealed that PTPases with molecular masses of 550, 300, and 60 kilodaltons were activated in response to NGF. Additional studies showed that the presence of NGF made PC12 cells refractory to the mitogenic effect of epidermal growth factor. Our data indicate that NGF-induced neuronal differentiation and growth arrest in PC12 cells are associated with activation of several PTPases. We speculate that PTPase activation in response to NGF may inhibit the mitogenic actions of other growth factors.  相似文献   

8.
Mastoparan, a basic tetradecapeptide isolated from wasp venom, is a novel mitogen for Swiss 3T3 cells. This peptide induced DNA synthesis in synergy with insulin in a concentration-dependent manner; half-maximum and maximum responses were achieved at 14 and 17 microM, respectively. Mastoparan also stimulated DNA synthesis in the presence of other growth promoting factors including bombesin, insulin-like growth factor-1, and platelet-derived growth factor. The synergistic mitogenic stimulation by mastoparan can be dissociated from activation of phospholipase C. Mastoparan did not stimulate phosphoinositide breakdown, Ca2+ mobilization or protein kinase C-mediated phosphorylation of a major cellular substrate or transmodulation of the epidermal growth factor receptor. In contrast, mastoparan stimulated arachidonic acid release, prostaglandin E2 production, and enhanced cAMP accumulation in the presence of forskolin. These responses were inhibited by prior treatment with pertussis toxin. Hence, mastoparan stimulates arachidonic acid release via a pertussis toxin-sensitive G protein in Swiss 3T3 cells. Arachidonic acid, like mastoparan, stimulated DNA synthesis in the presence of insulin. The ability of mastoparan to stimulate mitogenesis was reduced by pertussis toxin treatment. These results demonstrate, for the first time, that mastoparan stimulates reinitiation of DNA synthesis in Swiss 3T3 cells and indicate that this peptide may be a useful probe to elucidate signal transduction mechanisms in mitogenesis.  相似文献   

9.
We have used differentiated L6 myocytes to investigate the regulation of glucose transporter gene expression by insulin and insulin-like growth factor-1 (IGF-1). Chronic exposure to insulin (1 microM) or IGF-1 (10 nm) resulted in a 2- to 5-fold stimulation of 3H-2-deoxy-D-glucose uptake and a corresponding increase in the expression of rat brain/HepG2-type glucose transporter mRNA (GTmRNA) and immunoreactive transporter protein. The dose responses to both insulin and IGF-1 for stimulation of glucose uptake were paralleled by the expression of GTmRNA. Glucose uptake and GTmRNA levels were half maximally stimulated by 350 and 100 nM insulin, respectively, or by 2 nM IGF-1. Comparison of receptor occupancy with stimulation of glucose uptake and GTmRNA expression suggests that insulin exerts its effects through the IGF-1 receptor. Fibroblast growth factor, epidermal growth factor, platelet-derived growth factor, and phorbol ester had little or no effect on GTmRNA expression. These results demonstrate that the IGF-1 receptor mediates chronic regulation of transporter mRNA expression and protein synthesis and activity in cultured rat muscle cells.  相似文献   

10.
Recent data suggest that uric acid is generated locally in the vessel wall by the action of xanthine oxidase. This enzyme, activated during ischemia/reperfusion by proteolytic conversion of xanthine dehydrogenase, catalyzes the oxidation of xanthine, thereby generating free radicals and uric acid. Because of the potential role of ischemia/reperfusion in vascular disease, we studied the effects of uric acid on rat aortic vascular smooth muscle cell (VSMC) growth. Uric acid stimulated VSMC DNA synthesis, as measured by [3H]thymidine incorporation, in a concentration-dependent manner with half-maximal activity at 150 microM. Maximal induction of DNA synthesis by uric acid (250 microM) was approximately 70% of 10% calf serum and equal to 10 ng/ml platelet-derived growth factor (PDGF) AB or 20 ng/ml fibroblast growth factor. Neither uric acid precursors (xanthine and hypoxanthine) nor antioxidants (ascorbic acid, glutathione, and alpha-tocopherol) were mitogenic for VSMC. Uric acid was mitogenic for VSMC but not for fibroblasts or renal epithelial cells. The time course for uric acid stimulation of VSMC growth was slower than serum, suggesting induction of an autocrine growth mechanism. Exposure of quiescent VSMC to uric acid stimulated accumulation of PDGF A-chain mRNA (greater than 5-fold at 8 h) and secretion of PDGF-like material in conditioned medium (greater than 10-fold at 24 h). Uric acid-induced [3H]thymidine incorporation was markedly inhibited by incubation with anti-PDGF A-chain polyclonal antibodies. Thus uric acid stimulates VSMC growth via an autocrine mechanism involving PDGF A-chain. These findings suggest that generation of uric acid during ischemia/reperfusion contributes to atherogenesis and intimal proliferation following arterial injury.  相似文献   

11.
The present study demonstrates that nerve growth factor (NGF) possesses both antimitogenic and mitogenic activities. To this end, we have employed clonal PC12 rat pheochromocytoma cells and two PC12 variant sublines, U2 and U7. When PC12 cells are exposed to NGF in culture media that are otherwise either permissive (15% serum) or restrictive (1% serum) for proliferation, neuronal differentiation occurs and mitosis ceases. Variant lines of PC12 cells have been selected that continue to proliferate in the presence of NGF in permissive medium but which nevertheless retain NGF receptors and certain NGF responses. In contrast to the parent PC12 cells, when such variants were exposed to NGF in growth-restrictive media, cell proliferation was markedly stimulated. The mitogenic activity of NGF was detectable at 0.1 ng/ml (4 pM) and was maximal at 3 ng/ml (100 pM). Possible contamination of the NGF preparation by epidermal growth factor (EGF) or mitogenic proteolytic enzymes was ruled out by the use of anti-EGF and diisopropylfluoro-phosphate, respectively. These findings show that NGF shares the capacity to stimulate cell division with a variety of other peptide hormones and suggest that the mitogenic activity of NGF could play a role in development of the peripheral nervous system as well as in promotion of in vivo growth of certain neural crest-derived neoplasms.  相似文献   

12.
The present work studied the effect of chronic bombesin on the mouse pancreas and analyzed whether or not this effect was direct. Bombesin administered s.c. 3 times daily for 4 days at various concentrations (0.1, 1, 10, 20 micrograms/kg b. wt.) induced pancreatic growth in a dose-dependent manner. This growth was characterized by an increase in pancreatic weight, its protein and RNA contents suggesting cellular hypertrophy. Pancreatic enzyme content was also increased, especially for amylase (14-fold) and at a lesser degree for chymotrypsin and lipase (2.5-fold). The DNA content of the gland increased significantly after a 1 microgram/kg bombesin treatment suggesting hyperplasia. [3H]thymidine incorporation into DNA increased slightly from 24 h after the first bombesin injection and more obviously at 72 and 96 h indicating DNA synthesis. To determine the direct effect of bombesin on pancreatic acinar cell growth cells were cultured as monolayers on collagen gels in media lacking added hormones and containing 2.5% FBS with or without bombesin (1 microM-1 nM) or caerulein (10 nM). [3H]thymidine incorporation into DNA was increased by caerulein (10 nM) and bombesin (100 nM and 1 microM). Therefore, it is concluded that bombesin is a pancreaticotrophic peptide in mice. Moreover, it is suggested that this effect occurs directly on pancreatic cells.  相似文献   

13.
The conditioned medium from Sertoli cells contains a potent mitogen(s) that can markedly stimulate the proliferation of 4 different cell lines of endoderm or mesoderm origin in the presence or absence of serum. With A431 cells, conditioned medium produced in a dose-dependent manner up to a 5.2-fold increase in cell number after 5 days in culture. Addition of follicle-stimulating hormone (FSH), testosterone, retinol, and insulin to the Sertoli cells increased the secretion of the mitogenic activity. The ability of Sertoli cell conditioned medium (SCCM) to displace 125I-labeled epidermal growth factor (125I-EGF) from formalin-fixed A431 cells was also examined. The SCCM from Sertoli cells incubated with insulin contained 1.42 ng eq of EGF/ml; testosterone, retinol, and FSH (in the presence of insulin) further increased the secretion of this EGF competing activity to 2.09, 2.56, and 3.22 ng eq/ml, respectively. The amount of EGF competing activity was positively correlated with mitogenic activity. Separation of SCCM by gel filtration on Bio-Gel P-10 produced three major peaks of EGF-competing activity at apparent Mr = 1800-2100, 3800-4200, and 8000-9500. Chromatographing SCCM (in the presence of protease inhibitors) on size exclusion high performance liquid chromatography revealed two peaks of EGF competing activity at Mr about 8000 and 2000 coincident with and proportional to peaks of mitogenic activity. This activity was heat-sensitive and resistant to reducing agents, and addition of an equivalent amount of EGF as that present in SCCM produced an inhibition in growth of the A431 cells compared to a 3-fold stimulation with SCCM. Thus, the Sertoli cells secrete a potent mitogen that is distinct from EGF and alpha TGF. This factor that we have termed Sertoli cell-secreted growth factor is hormonally regulated by FSH, testosterone, and retinol and may play an important role in controlling spermatogenesis.  相似文献   

14.
Regulation of phosphatidylcholine biosynthesis by mitogenic growth factors   总被引:5,自引:0,他引:5  
Phosphatidylcholine (PC) biosynthesis in cultured 3T3 fibroblasts was increased in varying degrees by these mitogenic growth factors: fetal bovine serum, insulin, 12-O-tetradecanoylphorbol-13-acetate, epidermal growth factor, vasopressin, fibroblast growth factor and insulin-like growth factors I and II. PC synthesis was increased 2-4-fold by 10% serum, up to 4-fold by growth factors alone, and up to 8-fold by combinations of two or more growth factors. Single growth factors had no effect on the incorporation of [3H]choline into the acid-soluble precursors of PC, while serum or combinations of two or more mitogens could increase the incorporation of [3H]choline into acid-soluble material by up to 2-fold. Serum was shown to increase choline phosphorylation, choline kinase activity and the size of the phosphocholine pool. These data were utilized to calculate the radioactive specific activity of phosphocholine. Serum did not increase phosphocholine specific activity above control values; thus the increased incorporation of labelled choline into PC after serum stimulation resulted from increased PC synthesis and not from a simple change in specific activity of precursor phosphocholine.  相似文献   

15.
The effects of bradykinin (BK) and lithium on the phosphatidylinositol cycle were examined in PC12 cells cultured for 20 h in the presence [PC12(+)] or in the absence [PC12(-)] of nerve growth factor (NGF). BK (1 microM) induced a small stimulation of the incorporation of myo-[2-3H]inositol into the lipids of PC12(-) cells and a three- to fourfold stimulation of such incorporation into the lipids of PC12 (+) cells. About 15 h of incubation with NGF and greater than 10 min of incubation with BK were needed for maximal stimulation of inositol incorporation by BK. In the presence of 25 mM LiCl, BK stimulated the inositol monophosphate levels nine-fold in PC12 (-) and 30-fold in PC12 (+) cells. After incubation for 20 h with NGF, an increased binding of [3H]BK to the PC12 (+) cells was observed at 4 degrees C. Exposure of the cells for 30 min to 25 mM LiCl enhanced the effect of BK on the inositol incorporation into total inositol lipids, especially in PC12(+) cells. In these cells, LiCl in the presence of BK also increased several-fold the intracellular levels of inositol bisphosphate and inositol trisphosphate.  相似文献   

16.
The mitogenicity of germ cell proteins released from round spermatids (RS) and pachytene spermatocytes (PS) was investigated. Germ cells were isolated by centrifugal elutriation from 90-day-old rat testes and incubated in a supplement enriched culture media that lacked exogenous proteins. The conditioned culture media of RS and PS were dialysed/concentrated and lyophilized to prepare RS protein (RSP) and PS protein (PSP). Mitogenic activity of RSP and PSP was determined by 3H-thymidine incorporation into Swiss 3T3 fibroblasts. RSP and PSP stimulated 3H-thymidine incorporation by fibroblasts in a dose-dependent manner. At a higher concentration of RSP (300 micrograms/ml), fibroblast proliferation was stimulated from 6- to 20-fold of control cultures, whereas PSP (300 micrograms/ml) stimulated fibroblast proliferation 2.5-fold of control cultures. Since RSP exhibited substantially greater mitogenic activity than PSP we further investigated the RSP mitogenic substance(s) by immunoneutralization with antibodies against several growth factors. The mitogenic activity of RSP was significantly reduced by treatment with nerve growth factor (NGF) antibody, while neither the treatment of RSP with acidic fibroblast growth factor (aFGF) antibody, nor basic fibroblast growth factor (bFGF) antibody significantly modified the mitogenic activity of RSP. Interestingly, murine NGF-beta, recombinant human NGF-beta, and bovine serum albumin (BSA) did not exhibit mitogenic activity on 3T3 fibroblasts. Nevertheless, the presence of a NGF-like protein in RS and PS was confirmed by indirect immunofluorescence staining with a murine NGF antibody. Subsequently, a Western blot analysis with the NGF antibody identified two immunoreactive bands of 41 +/- 2 kDa and 51 +/- 1 kDa in both RSP and PSP under reduced conditions. These germ cell NGF-like proteins were apparently different from similarly prepared murine and human NGFs (13 kDa) in their molecular weight. Furthermore, neurite outgrowth from pheochromocytoma cells (PC-12), a functional bioassay for NGF-like activity, was stimulated by addition of RSP and PSP to the culture media of the PC-12 cells. These results demonstrate mitogenic activity in germ cell proteins (RSP and PSP) and identify a NGF-like protein(s) which is associated with most of this activity.  相似文献   

17.
Tumor necrosis factor alpha (TNFalpha) interferes with insulin signaling in adipose tissue and may promote insulin resistance. Insulin binding to the insulin receptor (IR) triggers its autophosphorylation, resulting in phosphorylation of Shc and the downstream activation of p42/p44 extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2), which mediates insulin-induced proliferation in vascular smooth muscle cells (VSMC). Since insulin resistance is a risk factor for vascular disease, we examined the effects of TNFalpha on mitogenic signaling by insulin. In rat aortic VSMC, insulin induced rapid phosphorylation of the IR and Shc and caused a 5.3-fold increase in activated, phosphorylated ERK1/2 at 10 min. Insulin induced a biphasic ERK1/2 activation with a transient peak at 10 min and a sustained late phase after 2 h. Preincubation (30-120 min) with TNFalpha had no effect on insulin-induced IR phosphorylation. In contrast, TNFalpha transiently suppressed insulin-induced ERK1/2 activation. Insulin-induced phosphorylation of Shc was inhibited by TNFalpha in a similar pattern. Since mitogenic signaling by insulin in VSMC requires ERK1/2 activation, we examined the effect of TNFalpha on insulin-induced proliferation. Insulin alone induced a 3.4-fold increase in DNA synthesis, which TNFalpha inhibited by 48%. TNFalpha alone was not mitogenic. Inhibition of ERK1/2 activation with PD98059 also inhibited insulin-stimulated DNA synthesis by 57%. TNFalpha did not inhibit platelet-derived growth factor-induced ERK1/2 activation or DNA synthesis in VSMC. Thus, TNFalpha selectively interferes with insulin-induced mitogenic signaling by inhibiting the phosphorylation of Shc and the downstream activation of ERK1/2.  相似文献   

18.
We have used a permeabilized cell assay and a synthetic peptide substrate (KRTLRR) to specifically monitor the activity of protein kinase C in PC12 cells preincubated with nerve growth factor (NGF), epidermal growth factor (EGF), or phorbol esters. Pretreatment of PC12 cells with 1 microM 12-O-tetradecanoylphorbol 13-acetate or 1 microM phorbol dibutyrate stimulated the rate of KRTLRR peptide phosphorylation 4.8- and 2.6-fold, respectively. Furthermore, pretreatment of cells with NGF or EGF transiently increased the KRTLRR peptide kinase activity. Peak stimulations of KRTLRR peptide kinase (1.3-2-fold) were observed after 1-5 min of growth factor treatment and returned to control levels within 15-20 min. The KRTLRR peptide kinase activity fulfilled two criteria of protein kinase C. A synthetic peptide inhibitor of protein kinase C inhibited both growth factor- and phorbol ester-stimulated KRTLRR peptide kinase activity. In addition, growth factors and phorbol esters failed to stimulate KRTLRR peptide kinase activity in cells rendered protein kinase C-deficient by long-term treatment with 1 microM 12-O-tetradecanoylphorbol 13-acetate. In contrast to the transient activation of protein kinase C, ribosomal S6 kinase, assayed with the synthetic peptide RRLSSLRA, was persistently activated by NGF and EGF. The findings indicate that protein kinase C serves an early and transient role in the molecular actions of NGF and EGF in PC12 cells.  相似文献   

19.
The aim of this study was to examine possible modulatory effects of some trophic molecules, i.e. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF), on potassium (K(+))-, bradykinin (BK)- or capsaicin (CAPS)-evoked release of glutamate (GLU) from dorsal root ganglion (DRG) neurons in vitro. BK (0.5 and 1 microM) induced a dramatic and significant increase in glutamate release. Neither CAPS nor K(+) (60 mM) produced any significant increase of GLU release vs. basal levels during a 5-min stimulation. The BK-evoked release of GLU was almost completely blocked by HOE 140, a selective BK2-receptor antagonist at high doses. Basal release of GLU was significantly reduced in cultures grown in the presence of bFGF, whereas BDNF and NGF had no significant effect. Incubation with growth factors generally decreased the BK-stimulated GLU release, an effect most pronounced for bFGF, which completely blocked BK-stimulated release. The rise in intracellular [Ca(2+)] following stimulation with BK (100 nM-1 microM), potassium (60 mM) or ATP (10 microM) was also studied using a Ca(2+)-sensitive indicator, Fura-2, in cultures grown in basal medium with or without bFGF. None of the bFGF-treated cells exhibited strong Ca(2+) responses to BK or ATP stimulation, while 10-20% of the responding cells grown in basal medium exhibited strong responses. The K(+)-induced increase of [Ca(2+)] did not vary between the different groups.The present findings suggest that sensory neurotransmission involving glutamate may be modulated by growth factors and that regulation of intracellular Ca(2+) homeostasis may be a contributing factor.  相似文献   

20.
The effects of bombesin and insulin, separately and in combination, have been studied in Swiss mouse 3T3 cells. Bombesin caused a rapid transfer of 3H from the lipid inositol pool of prelabeled cells into inositol phosphates. Label in inositol tetrakisphosphate (InsP4) and in Ins1,4,5P3 and Ins1,3,4P3 rose within 10 sec of stimulation and that in Ins1,4P2, another InsP2 and InsP1, more slowly. Insulin, which had little effect on its own, increased the turnover of inositol lipids due to acute bombesin stimulation and also enhanced the DNA synthesis evoked by prolonged bombesin treatment. The results suggest that bombesin acting as a growth factor, uses inositol lipids as part of its transduction mechanism and that insulin acts synergistically to enhance both inositol phosphate formation and DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号