首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A B cell line, B6-1710, that expresses the defective virus known to induce murine AIDS stimulates a large fraction of nonprimed splenic T cells. Analysis of the T cell population responding to the B6-1710 for TCR V beta-chain usage revealed that, in addition to the previously reported V beta 5-chain-positive T cells, T cells bearing V beta 11 and V beta 12 are also specifically enriched. We have established V beta 5+ T cell lines, clones, and hybridomas expressing identical TCR with different CD4/CD8 phenotypes and demonstrated that T cell reactivity to B6-1710 is, although not absolute, dependent on the presence of CD4 molecules. Further analysis of T cell hybridomas with known J beta-chain usage revealed that D beta- and J beta-chain usage do not play crucial roles in T cell reactivity to B6-1710 B cells. However, T cell hybridomas derived from TCR-V beta gene transgenic mice were found to be heterogeneous for their reactivity to B6-1710, suggesting that the V alpha-chains associating with the transgenic V beta-chain determine T cell responsiveness to B6-1710. These data clearly demonstrate that T cell reactivity to a murine AIDS virus expressing B cell line resembles that previously reported for Mls-like superantigens.  相似文献   

2.
T cell antigen receptors in autoimmunity   总被引:6,自引:0,他引:6  
Three mAb to variable region determinants of the alpha/beta-chain TCR were used to detect discrete populations of peripheral blood T cells. T cells sharing a TCR determinant defined by such an antibody presumably use the same or similar TCR V or J genes for their alpha- or beta-chains. Thus analysis with these mAb provides a tool to investigate TCR gene usage and expression. Since autoantigen specific T cells may play an important role in initiating autoimmune diseases, TCR were analyzed in different autoimmune diseases and control groups including rheumatoid arthritis, Graves disease, idiopathic thrombocytopenic purpura, psoriasis, SLE, insulin-dependent diabetes mellitus, and in nonautoimmune control diseases and normals. Purified T cells were stained by indirect immunofluorescence with three mAb to TCR variable regions: mAb S511 stains 1.8 +/- 0.9% (mean +/- 2 SD), mAb C37 stains 3.4 +/- 1.5% and mAb OT145 stains from 0 to 6% of T cells from normal donors. Several individuals were identified with expanded subsets of positive T cells. One patient with adult ITP followed during a 12-mo period consistently had elevated percentages of T cells staining with the mAb OT145 (15.9 to 24.5%). These cells were found to be exclusively CD8+. By Southern blotting DNA prepared from these OT145+, CD8+ cells, but not DNA from the patient's OT145- T cells, revealed a clonal rearrangement using a beta-chain C region probe. Thus this patient had a monoclonal expansion of CD8+, OT145+ cells. Hyperexpression of a TCR variable region, as defined by the available mAb, could not be associated with any of the diseases studied. Examination of T cells at the site of autoimmunity, such as T cells from rheumatoid arthritis synovial fluid, revealed normal percentages of cells staining with these mAb. Immunoperoxidase staining of psoriatic lesional skin showed no striking enrichment of T cells bearing one or the other TCR type.  相似文献   

3.
Three rat mAb, RR3-15, RR3-16, and RR3-18, were established by fusing spleen cells from a rat immunized with the male Ag-specific cytolytic T cell clone, OH6, to mouse myeloma cells. The mAb was identified by their capacity to focus the cytolytic activity of the OH6 CTL clone on nonspecific target cells via FcR-FcR interaction. That all three mAb recognized the OH6 TCR was confirmed by immunoprecipitation studies in which each antibody precipitated a 90 kDa disulfide-linked heterodimer characteristic of the TCR. Surface immunofluorescence staining of a panel of T cell lines and splenic T cell populations showed that RR3-16 reacted not only to the OH6 T cell clone but also to a minor fraction of normal T cells. This reactivity was found to be due to the expression of a gene in the V alpha 3 family. However, RR3-16 did not react with all T cell lines and clones known to express genes from the V alpha 3 family. cDNA sequences of three independent RR3-16+ T cell hybridomas analyzed by polymerase chain reaction were identical to the previously published V alpha 3 sequence of the CTL clone C9. Thus, the mAb RR3-16 is specific for a single member of the TCR V alpha 3 gene family. Analysis of the expression of RR3-16+ TCR in CD4+ and CD8+ subsets of peripheral T cells demonstrated preferential expression on CD8+ T cells, suggesting regulated expression of this particular TCR V alpha gene.  相似文献   

4.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

5.
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.  相似文献   

6.
7.
BACKGROUND: Sarcoidosis is a granulomatous disease characterized by the accumulation of activated T cells in the lungs. We previously showed that sarcoidosis patients expressing the HLA haplotype DR3(17),DQ2 had increased numbers of lung CD4+ T cells using the T cell receptor (TCR) variable region (V) alpha 2.3 gene segment product. In the present study, the composition of both the TCR alpha- and beta-chains of the expanded CD4+ lung T cells from four DR3(17),DQ2+ sarcoidosis patients was examined. MATERIALS AND METHODS: TCR alpha-chains were analyzed by cDNA cloning and nucleotide sequencing. TCR beta-chains were analyzed for V beta usage by flow cytometry using TCR V-specific monoclonal antibodies or by the polymerase chain reaction (PCR) using V beta- and C beta-specific primers. J beta usage was analyzed by Southern blotting of PCR products and subsequent hybridization with radiolabeled J beta-specific probes. RESULTS: Evidence of biased J alpha gene segment usage by the alpha-chains of V alpha 2.3+ CD4+ lung T cells was found in four out of four patients. Both different alpha-chain nucleotide sequences coding for identical amino acid sequences and a number of identically repeated alpha-chain sequences were identified. In contrast, the TCR beta-chains of FACS-sorted V alpha 2.3+ CD4+ lung T cells were found, with one exception, to have a nonrestricted TCR V beta usage. CONCLUSIONS: The finding of V alpha 2.3+ CD4+ lung T cells with identical TCR alpha-chain amino acid sequences but with different nucleotide sequences strongly suggests that different T cell clones have been selected to interact with a specific sarcoidosis associated antigen(s). The identification of T cells with restricted TCR usage, which may play an important role in the development of sarcoidosis, and the possibility of selectively manipulating these cells should have important implications for the treatment of the disease.  相似文献   

8.
To determine whether there is predominance of T cells expressing a particular TCR V beta chain in the inflammatory lesions of an autoimmune disease model, TCR expression was analyzed in central nervous system (CNS) tissues of mice with experimental allergic encephalomyelitis (EAE). Acute EAE was induced in SJL/J mice either by sensitization with a synthetic peptide corresponding to myelin proteolipid protein residues 139-151 or by adoptive transfer of myelin proteolipid protein peptide 139-151-specific encephalitogenic T cell clones. Mice were killed when they showed clinical signs of EAE or by 40 days after sensitization or T cell transfer. Cryostat CNS and lymphoid tissue sections were immunostained with a panel of mAb to T cell markers and proportions of stained cells were counted in inflammatory foci. In mice with both actively induced and adoptively transferred EAE, infiltrates consisted of many CD3+, TCR alpha beta+, and CD4+ cells, fewer CD8+ cells, and small numbers of TCR gamma delta+ cells. Approximately 30% of CD45+ leukocytes in the inflammatory foci were T cells. Cells expressing TCR V beta 2, 3, 4, 6, 7 and 14 were detected in the infiltrates, whereas TCR V beta 8 and 11, which that are deleted in SJL mice, were absent. When EAE was induced by transfer of T cell clones that use either V beta 2, 6, 10, or 17, there was also a heterogeneous accumulation of T cells in the lesions. Similar proportions of TCR V beta+ and gamma delta+ cells were detected in EAE lesions and in the spleens of the mice. Thus, at the time that clinical signs are present in acute EAE, peripherally derived, heterogeneous TCR V beta+ cells are found in CNS lesions, even when the immune response is initiated to a short peptide Ag or by a T cell clone using a single TCR V beta.  相似文献   

9.
Transgenic mice expressing the human insulin gene do not produce insulin-specific antibody after injection of human insulin. Nevertheless, they have some peripheral T cells that proliferate to human insulin in vitro. To investigate the nature of these T cells, human insulin-specific T cell hybridomas were produced from transgenic and nontransgenic mice. Transgenic hybridomas required more insulin to achieve maximum responses and they produced lower levels of lymphokines than nontransgenic hybridomas. The majority of nontransgenic hybridomas recognized only human and pork insulin whereas transgenic hybridomas recognized beef, sheep, and/or horse insulin in addition to human and pork insulin. The TCR expressed by transgenic and nontransgenic hybridomas were determined by Northern analysis. Both types of hybridomas used several different V alpha and V beta gene families and no favored association between V alpha and V beta gene usage was detected in either type. V beta 1 was used by 7 of 16 nontransgenic hybridomas but only by 1 of 16 transgenic hybridomas. V beta 6 receptors were predominantly expressed by the transgenic hybridomas and all V beta 6-bearing hybridomas recognized beef as well as human insulin. The differences in Ag reactivity and TCR gene usage suggest that V beta 1-bearing human insulin-reactive T cells were clonally deleted or inactivated in the transgenic animal. Other clones, representing a minor subpopulation in nontransgenic mice, were recovered from transgenic mice.  相似文献   

10.
Three monoclonal antibodies (mAb) 2D1, 3B9, and 3B12 were produced by immunizing BALB/c mice with JURKAT cells. These mAb induce comodulation of the TCR/CD3 complex expressed on JURKAT cells, but do not react with the CD3- JURKAT variant, J.RT3.T3.1. Immunoprecipitation studies with detergent-solubilized JURKAT cell lystes indicate that these mAb react with proteins having characteristics of the TCR molecules. Their low reactivity with peripheral blood mononuclear cells (PBMC) and lack of reactivity with other CD3+ T cell lines suggest that they may be anti-idiotypic mAb. Results from binding inhibition assays, reactivity with PBMC, and generation of transmembrane signals suggest that these three anti-TCR mAb recognized different epitopes on the TCR beta chain of JURKAT cells. Although the three mAb are capable of inducing the production of inositol phosphates and cytosolic free Ca2+ increase in JURKAT cells, their stimulatory capacities vary and are lower than that observed by anti-CD3 antibody (OKT3) stimulation. However, crosslinking these mAb with rabbit antimouse immunoglobulins potentiates the stimulatory response to comparable levels induced by OKT3. These mAb could be useful as tools to study V beta 8+ T cells in relation to antigen-specific activation.  相似文献   

11.
To determine whether T cell receptor genes follow the same principle of allelic exclusion as B lymphocytes, we have analyzed the rearrangements and expression of TCR alpha and beta genes in the progeny of the CD3+, CD4-/CD8- M14T line. Here, we show that this line can undergo secondary rearrangements that replace the pre-existing V alpha-J alpha rearrangements by joining an upstream V alpha gene to a downstream J alpha segment. Both the productively and nonproductively rearranged alleles in the M14T line can undergo secondary rearrangements while its TCR beta genes are stable. These secondary recombinations are usually productive, and new forms of TCR alpha polypeptides are expressed in these cells in association with the original C beta chain. Developmental control of this V alpha-J alpha replacement phenomenon could play a pivotal role in the thymic selection of the T cell repertoire.  相似文献   

12.
TCR J alpha genes span a distance of approximately 65 kb on mouse chromosome 14. Due to the existence of 50 to 100 discrete J genes, a potential for great diversity exists within the V-J-C alpha gene products and within the ultimate repertoire of alpha beta TCR. We have prepared hybridomas from an in vitro system that supports T cell differentiation among bone marrow cells. We have examined the J alpha genes among these cells and categorized rearrangements according to their location within the J alpha locus. It was found that alpha rearrangements were always present among the hybridomas bearing beta gene rearrangements. When two bone marrow-derived alpha-bearing chromosomes could be demonstrated in these hybridomas, both were always rearranged and rearrangements on homologous chromosomes were shown to reside in similar regions of the J alpha locus. Most surprisingly, when hybridomas were categorized by the culture from which they derived, cells from the same culture (designated as a set) demonstrated a skewing of alpha rearrangements to restricted segments of J alpha genes. In one hybridoma, rearrangements on homologous chromosomes involved J alpha genes that were either identical or situated within a 1-kb segment of DNA. The skewing within sets could not be due to clonal identity between hybridomas as the beta and gamma rearrangements in all hybridomas were different. Results suggested that skewing of J alpha gene rearrangements occurred during the course of T cell development in vitro. Should the same situation occur in vivo, the number of distinct TCR J alpha sequences available for expression in early development may be far less than that predicted by gene number alone.  相似文献   

13.
We have studied the relationship between MHC-restricted, Ag-specific recognition and TCR structure in a panel of seven Th-hybridomas specific for the foreign protein Ag, hen egg-white lysozyme, and the I-Ak class II MHC molecule. The fine specificity of these Th cells had been determined previously by their reactivity to a panel of APC lines bearing mutant I-Ak molecules and to proteolytic fragments of HEL. TCR gene segment composition was determined by cDNA cloning and DNA sequencing. A heterogeneous, yet repetitive usage of gene segments was observed within the panel. The same V alpha C10-J alpha MD13 rearrangement was used in three of the hybridomas, two with identical Ag and MHC-restriction fine specificities. The prevalent usage of the V beta 14 gene segment and members of J beta 2 cluster was noted. Inasmuch as gene segment usage did not correlate with MHC-restriction or Ag fine specificity alone, these results favor an interactive Ag model of T-cell recognition, in which Ag and MHC are recognized as a bimolecular complex.  相似文献   

14.
We examined TCR gene usage in a panel of beef insulin/I-Ad-restricted T cell hybrids obtained from BALB/c mice. These hybrids demonstrated several distinct patterns of reactivity defined by their ability to respond to species variants of insulin. Correlation of TCR-alpha and -beta-gene usage with these patterns of reactivity demonstrated that TCR gene usage was restricted within Ag reactivity groups. In particular, V-J junctional regions (CDR3 equivalent) were restricted with conserved junctional amino acid motifs present in both TCR-alpha- and -beta-chains. Comparison of TCR gene usage in hybrids expressing identical V alpha and V beta gene segments but demonstrating different patterns of reactivity revealed that changes in either J alpha and/or J beta gene segment usage could alter antigenic reactivity. Indeed, single or limited amino acid differences within the CDR3 region were sufficient to markedly alter fine specificity. These data demonstrate the critical role for CDR3 in determining antigenic reactivity in beef insulin-reactive hybrids and are compatible with the current model of TCR/peptide/MHC interaction.  相似文献   

15.
The specificity and TCR gene usage of a panel of sperm whale myoglobin (SpWMb)-reactive T cell clones from DBA/2 mice have previously been characterized, to study structure-function relationships between components of the ternary complex consisting of Ag, TCR, and MHC class II molecules, whose interaction leads to Th cell activation. These DBA/2 clones were specific for epitopes within the residue 110 to 121 region of SpWMb, in the context of the mixed isotype molecule E alpha dA beta d, and expressed the TCR V beta 8.2 gene element. SpWMb-specific T cell hybridomas from the H-2d-congenic B10.D2 mouse strain, which differs from the DBA/2 strain only in the non-MHC background, were generated and compared with the T cell hybridomas from DBA/2 mice, in order to investigate the influence of non-MHC genes on the specificity of the T cell response to the 110-121 epitope. V beta usage by these hybridomas was very homogeneous; three of three DBA/2 and eight of nine B10.D2 hybridomas specific for the 110-121 epitope, in the context of the mixed isotype molecule E alpha dA beta d, expressed the V beta 8.2 gene product. Nucleotide and amino acid sequences of D beta, J beta, and N regions were also similar. One 110-121/E alpha dA beta d-specific B10.D2 hybridoma used V beta 7, a V beta that is clonally deleted in DBA/2 mice. These experiments suggest that a similar set of TCR beta genes are used to respond to a given epitope, regardless of non-MHC background, and they support the hypothesis that, despite great variability between individuals in their non-MHC background genes, human HLA-associated diseases might result from the formation of a particular ternary complex consisting of a shared MHC molecule, a common "disease-associated" epitope, and a shared TCR.  相似文献   

16.
Circulating maternal T lymphocytes were noted in the peripheral blood of six patients with severe combined immunodeficiency. Phenotypical analyses revealed the presence of both CD4 and CD8 subsets in some but not all cases. The maternal T cells could be stimulated by anti-TCR/CD3 mAb +/- rIL-2, but were virtually silent in the MLR and against the recall Ag purified protein derivative of tuberculin and tetanus toxoid, even in immunized patients engrafted with T cells from a responding mother. Using a panel of mAb against TCR V region gene encoded epitopes including V beta 5, V beta 6, V beta 8, V beta 12, and V alpha 2, we show that maternal T cells displayed a profoundly reduced TCR diversity, characterized by a lack of one or even several TCR V subsets in all six cases and a dramatic (5- to 25-fold) expansion of other TCR V subsets in three cases. In one patient analyzed, limited TCR diversity was also seen in T cells cultured from bone marrow and skin; restimulation experiments of these cells against cells expressing host MHC Ag were unsuccessful, as were attempts to exclusively allocate anti-host proliferative responses of maternal control T cells to the TCR V subsets that had undergone expansion in vivo. We conclude that a severely reduced TCR diversity is a common feature of maternal T cells engrafted in severe combined immunodeficiency patients. These novel findings provide a structural basis to understand the failure of these cells to protect the host from infections and may also help to understand their relative inefficiency to induce lethal, multi-organ, graft vs host disease. Moreover, as an experiment of nature, the reported phenomenon clearly illustrates the functional consequences in vivo of an insufficient TCR diversity.  相似文献   

17.
Proteolipid protein (PLP) is the major protein of central nervous system myelin. SJL (H-2s) mice immunized with a synthetic peptide corresponding to PLP residues 139-151 develop acute EAE. In this study, 6 IAs-restricted, CD4+, TCR alpha beta-bearing T cell clones were derived from SJL/J mice after immunization with this synthetic peptide. The clones responded in in vitro proliferative assays to the whole PLP molecule and to PLP peptide 139-151, but not to irrelevant Ag. They also responded to truncated and overlapping forms of the peptide but five distinct reactivity patterns were observed using these peptides. A panel of anti-TCR V beta mAb and TCR V beta-specific cDNA probes were used to determine the TCR V beta usage of the clones. Five clones were found to use four different V beta (V beta 2, V beta 6, V beta 10, or V beta 17a), whereas the V beta on the sixth clone could not be identified. Five of the clones induced EAE of varying severity upon adoptive transfer into naive syngeneic mice or mice pretreated with irradiation and pertussis and one clone was nonencephalitogenic. The Ag-specific proliferative response of all but the nonencephalitogenic clone could be blocked by an anti-CD4 mAb. Thus, the clones showed differences in their fine specifity, TCR V beta usage, sensitivity to antibody blocking, and encephalitogenic potency. These data demonstrate that the T cell response to the encephalitogenic PLP peptide 139-151 is heterogeneous.  相似文献   

18.
19.
The CD4 and CD8 molecules play an important role in the stimulation of T cells and in the process of thymic education. Most mature T cells express the alpha beta TCR and either CD4 or CD8; however, there is a small population of alpha beta+ TCR T cells that lack both CD4 and CD8. Little is known of the biology of the CD4- CD8- (double-negative) alpha beta+ TCR T cells or the nature of the Ag to which they may respond. These cells not only represent a novel population of T cells but also provide useful biologic tools to study the roles that CD4 and CD8 play in T cell activation. In this study we have addressed two questions. Firstly, whether CD4- CD8- alpha beta+ TCR T cells have functionally active TCR and, secondly, whether CD4 or CD8 is required for the activation of T cells by bacterial enterotoxins. Six double-negative alpha beta+ TCR T cell clones, propagated from two healthy donors, were challenged with a panel of nine bacterial enterotoxins. The V alpha and V beta usage of their TCR was determined by polymerase chain reaction. All of the CD4-CD8- clones proliferated in response to at least one of the enterotoxins, in a V beta-specific manner. The proliferative response of the CD4-CD8- alpha beta+ TCR T cell clones was similar in magnitude to that exhibited by CD4+ T cell clones of known V beta expression. These data clearly show that the CD4 and CD8 molecules are not required for the activation of untransformed human T cells by bacterial enterotoxins. Furthermore, these results indicate that CD4-CD8- alpha beta+ TCR T cells, normally present in all individuals, are not functionally silent, because they can be stimulated via their TCR. Their physiologic role, like that of gamma delta T cells, remains to be elucidated.  相似文献   

20.
Bulk populations and 39 hybridomas from splenic Con A cultures were analyzed for rearrangements among TCR genes: alpha, beta, gamma, and delta. Patterns were categorized to reveal general rules governing gene rearrangement within the activated adult peripheral population. Many patterns of gene rearrangement were consistent with previous studies of T cell lines. Additional points of interest were the following: 1) A large proportion of Con A-stimulated splenic cells bore no TCR gene rearrangements. 2) One splenic hybridoma exhibited an unusual gene pattern, with rearrangements, at alpha and beta, but not J gamma 1 or J gamma 2 loci. 3) Multiple gamma rearrangements were noted other than V1.2-J2 and V2-J1. 4) One hybridoma exhibited TCR gene rearrangements typical of day 14 to 15 fetal thymocytes, as well as rearrangements at immunoglobulin gene loci. 5) Among hybridomas with J alpha rearrangements, homologous chromosomes exhibited rearrangements at similar positions along the J alpha locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号