首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody effector functions have been shown to be influenced by the structure of the Fc N-glycans. Here we studied the changes in plasma or serum IgG Fc N-glycosylation upon vaccination of 10 Caucasian adults and 10 African children. Serum/plasma IgG was purified by affinity chromatography prior to and at two time points after vaccination. Fc N-glycosylation profiles of individual IgG subclasses were determined for both total IgG and affinity-purified anti-vaccine IgG using a recently developed fast nanoliquid chromatography-electrospray ionization MS (LC-ESI-MS) method. While vaccination had no effect on the glycosylation of total IgG, anti-vaccine IgG showed increased levels of galactosylation and sialylation upon active immunization. Interestingly, the number of sialic acids per galactose increased during the vaccination time course, suggesting a distinct regulation of galactosylation and sialylation. In addition we observed a decrease in the level of IgG1 bisecting N-acetylglucosamine whereas no significant changes were observed for the level of fucosylation. Our data indicate that dependent on the vaccination time point the infectious agent will encounter IgGs with different glycosylation profiles, which are expected to influence the antibody effector functions relevant in immunity.  相似文献   

2.
Biological activities of immunoglobulin G such as effector functions via Fc receptor interactions are influenced by Fc-linked N-glycans. Here we describe a fast, robust and sensitive nano-LC-ESI-MS method for detailed subclass specific analysis of IgG Fc N-glycosylation. A sheath-flow ESI sprayer was used as a sensitive zero dead volume plug-and-play interface for online MS coupling, generating a very constant spray and ionization over the entire LC gradient. The propionic acid containing sheath-liquid effectively suppressed TFA gas-phase ion-pairing, enabling the use of TFA containing mobile phases. The fixed position of the sheath-flow ESI sprayer, far away from the glass capillary inlet, reduced MS contamination as compared to conventional nano-ESI. The method was found to be suitable for fast and detailed subclass specific IgG Fc N-glycosylation profiling in human plasma. The obtained subclass specific IgG Fc N-glycosylation profiles were processed automatically using in house developed software tools. For each of the IgG subclasses the 8 major glycoforms showed an interday analytical variation below 5%. The method was used to profile the IgG Fc N-glycosylation of 26 women at several time points during pregnancy and after delivery, revealing pregnancy-associated changes in IgG galactosylation, sialylation and incidence of bisecting N-acetylglucosamine.  相似文献   

3.
    
Evidence indicating an important link between glycosylation changes and autoimmune rheumatic disease is presented. Attention is especially focused on the interrelationship between reduced galactosylation of the oligosaccharides of IgG, auto-sensitization which is thought to be of central importance in the pathogenesis of rheumatoid arthritis (RA), and the enzyme 1,4-galactosyltransferase (GTase) that catalyses the addition of galactose to the oligosaccharide chains on this molecule. Data are presented to indicate that GTase undergoes a variety of normal and disease associated changes. These variations are believed to contribute to the pathological processes in rheumatoid disease, and a hypothesis is suggested, whereby disease is associated with the dysregulation of an integrated glycosylation network, comprising IgG galactosylation, lymphocytic GTase and anti-GTase antibodies, that is a component of the normal immune system.  相似文献   

4.
Human immunoglobulin G (IgG) molecules are composed of two Fab portions and one Fc portion. The glycans attached to the Fc portions of IgG are known to modulate its biological activity as they influence interaction with both complement and various cellular Fc receptors. IgG glycosylation changes significantly with pregnancy, showing a vast increase in galactosylation and sialylation and a concomitant decrease in the incidence of bisecting GlcNAc. Maternal IgGs are actively transported to the fetus by the neonatal Fc receptor (FcRn) expressed in syncytiotrophoblasts in the placenta, providing the fetus and newborn with immunological protection. Two earlier reports described significant differences in total glycosylation between fetal and maternal IgG, suggesting a possible glycosylation-selective transport via the placenta. These results might suggest an alternative maternal transport pathway, since FcRn binding to IgG does not depend on Fc-glycosylation. These early studies were performed by releasing N-glycans from total IgG. Here, we chose for an alternative approach analyzing IgG Fc glycosylation at the glycopeptide level in an Fc-specific manner, providing glycosylation profiles for IgG1 and IgG4 as well as combined Fc glycosylation profiles of IgG2 and 3. The analysis of ten pairs of fetal and maternal IgG samples revealed largely comparable Fc glycosylation for all the analyzed subclasses. Average levels of galactosylation, sialylation, bisecting GlcNAc and fucosylation were very similar for the fetal and maternal IgGs. Our data suggest that the placental IgG transport is not Fc glycosylation selective.  相似文献   

5.
We have recently shown that IgG1 directed against antigens thought to be involved in the pathogenesis of rheumatoid arthritis harbor different glycan moieties on their Fc-tail, as compared with total sera IgG1. Given the crucial roles of Fc-linked N-glycans for the structure and biological activity of IgG, Fc-glycosylation of antibodies is receiving considerable interest. However, so far little is known about the signals and factors that could influence the composition of these carbohydrate structures on secreted IgG produced by B lymphocytes. Here we show that both "environmental" factors, such as all-trans retinoic acid (a natural metabolite of vitamin A), as well as factors stimulating the innate immune system (i.e. CpG oligodeoxynucleotide, a ligand for toll-like receptor 9) or coming from the adaptive immune system (i.e. interleukin-21, a T-cell derived cytokine) can modulate IgG1 Fc-glycosylation. These factors affect Fc-glycan profiles in different ways. CpG oligodeoxynucleotide and interleukin-21 increase Fc-linked galactosylation and reduce bisecting N-acetylglucosamine levels, whereas all-trans retinoic acid significantly decreases galactosylation and sialylation levels. Moreover, these effects appeared to be stable and specific for secreted IgG1 as no parallel changes of the corresponding glycans in the cellular glycan pool were observed. Interestingly, several other cytokines and molecules known to affect B-cell biology and antibody production did not have an impact on IgG1 Fc-coupled glycan profiles. Together, these data indicate that different stimuli received by B cells during their activation and differentiation can modulate the Fc-linked glycosylation of secreted IgG1 without affecting the general cellular glycosylation machinery. Our study, therefore, furthers our understanding of the regulation of IgG1 glycosylation at the cellular level.  相似文献   

6.
Many autoimmune conditions are believed to result from chronic inflammation as a consequence of the interaction of genetic and environmental factors in susceptible individuals. One common feature in some autoimmune diseases is the decrease in terminal galactosylation of the constant region N-glycan of the total plasma immunoglobulin. To determine whether a similar pattern is characteristic for the autoimmune disorder myositis, we analyzed the antibody subclass specific glycosylation in patients with myositis, their asymptomatic siblings, and healthy unrelated age- and sex-matched controls. The antibody subclass specific glycosylation was determined from the LC-MS analyses of the IgG glycopeptides generated by trypsin digestion of the antibody heavy chain. The glycosylation profiles of the IgG subclasses were determined relative to the total abundance of all glycoforms. We found elevated amounts of glycoforms lacking terminal galactose in myositis patients. Pairwise statistical analyses reveals that galactosylation is statistically different between the myositis patients and control groups. Furthermore, the trend analysis for glycosylation indicates a pattern of decreasing galactosylation in the order controls ≥ siblings ≥ myositis patients, suggesting the existence of a genetic, immune-related predisposition in the group of asymptomatic siblings that can be detected before the onset of clinical symptoms at the level of plasma proteins.  相似文献   

7.
Variable N-glycosylation at Asn(297) in the Fc region of recombinant therapeutic immunoglobulin G (IgG) molecules, specifically terminal galactosylation and sialylation, may affect both pharmacokinetic behavior and effector functions of recombinant therapeutic antibodies. We investigated the hypothesis that IgG Fc glycosylation can be controlled by manipulation of cellular nucleotide-sugar metabolism. In control cultures, N-glycans associated with the Fc domain of a recombinant humanized IgG1 produced by GS-NS0 cells in culture were predominantly biantennary, variably beta-galactosylated (average 0.3 mol galactose complex N-glycan(-1)) structures with no bisecting N-acetylglucosamine residues, sialylation, or alpha1,3-linked galactosylation evident. However, a variable proportion (5% to 15%) of high-mannose (Man5 to Man9) oligosaccharides were present. To manipulate the cellular content of the nucleotide sugar precursor required for galactosylation, UDP-Gal, we included either 10 mM glucosamine or 10 mM galactose in the culture medium. In the case of the former, a 17-fold increase in cellular UDP-N-acetylhexosamine content was observed, with a concomitant reduction (33%) in total UDP-hexose, although the ratio of UDP-Glc:UDP-Gal (4:1) was unchanged. Associated with these alterations in cellular UDP-sugar content was a significant reduction (57%) in the galactosylation of Fc-derived oligosaccharides. The proportion of high-mannose-type N-glycans (specifically Man5, the substrate for N-acetylglucosaminyltransferase I) at Asn(297) was unaffected. In contrast, inclusion of 10 mM galactose in culture specifically stimulated UDP-Gal content almost five-fold. However, this resulted in only a minimal, insignificant increase (6%) in beta1,4-galactosylation of Fc N-glycans. Sialylation was not improved upon the addition of the CMP-sialic acid (CMP-SA) precursor N-acetylmannosamine (20 mM), even with an associated 44-fold increase in cellular CMP-SA content. Analysis of recombinant IgG1 Fc glycosylation during batch culture showed that beta1,4-linked galactosylation declined slightly during culture, although, in the latter stages of culture, the release of proteases and glycosidases by lysed cells were likely to have contributed to the more dramatic drop in galactosylation. These data demonstrate: (i) the effect of steric hindrance on Fc N-glycan processing; (ii) the extent to which alterations in cellular nucleotide-sugar content may affect Fc N-glycan processing; and (iii) the potential for direct metabolic control of Fc N-glycosylation.  相似文献   

8.
IgG carries bi-antennary N-linked glycans which differ in degrees of galactosylation, core fucosylation and bisecting N-acetyl glucosamine. The majority of these are non-sialyated closely related neutral structures which can be resolved by HPLC analysis, but which are difficult to separate in techniques such as fluorophore-coupled carbohydrate electrophoresis. Derivatisation with the singly charged fluorophore, 2-amino benzoic acid and separation in gels with a 30% monomer content in tris/glycine buffer enabled separation of neutral glycans. In particular, agalactosyl glycans with either a core fucose substitution or bisecting N-acetyl galactosamine could be resolved. Good separation of mono- and di-galactosylated glycans was also achieved with this system. It was shown that IgG can be separated from serum by size-exclusion and anion exchange chromatography with minimal contamination, with complete glycan release accomplished by the enzyme peptide-N-glycosidase F (F. meningosepticum). This method of resolving IgG glycans could be used to monitor patients in which glycosylation changes may have a diagnostic value, as in rheumatoid arthritis. It could also be used to monitor recombinant IgG glycosylation where routine screening is required in the biotechnology industry.  相似文献   

9.
During pregnancy, most patients with rheumatoid arthritis (RA) experience spontaneous improvement of their disease activity. Among the soluble candidates that have been investigated in search for the most relevant disease-remitting factor are the galactosylation levels of immunoglobulin G (IgG). In RA, a higher percentage of IgG lacking the terminal galactose residues, thought to play a pro-inflammatory role, is found. During pregnancy, however, IgG galactosylation levels increase and correlate with improved disease activity. The question remains whether the increase in IgG galactosylation during pregnancy is a mere epiphenomenon or a true remission-inducing factor.  相似文献   

10.
The occurrence of N-linked oligosaccharides lacking galactose is significantly higher than normal in serum IgG of patients with rheumatoid arthritis (RA) in whom rheumatoid factor (RF), an autoantibody against autologous IgG, has been detected. In the present study, IgGs with and without RF activity (IgGRF and non-RF IgG, respectively) were prepared from sera of RA patients, and their oligosaccharide structures were characterized in order to investigate the relationship between RF activity and glycosylation. Three IgGRF fractions and a non-RF IgG fraction were obtained based on their ability to bind to an IgG-Sepharose column. The specific RF activity, as measured by immunoassays, was highest in the IgGRF fraction, which bound most avidly to the IgG-Sepharose. When the oligosaccharides were released by hydrazinolysis, and analyzed by MALDI-TOF mass spectrometry and HPLC, in combination with sequential exoglycosidase treatment, all the IgG samples were found to contain a series of biantennary complex-type oligosaccharides. The incidence of galactose-free oligosaccharides was significantly higher in both IgGRFs and non-RF IgG from RA patients compared with IgG from healthy individuals. In all IgGRFs, the levels of sialylation and galactosylation were lower than those in non-RF IgG from RA patients; the sialylation of non-RF IgG was the same as that of IgG from healthy individuals. In addition, the decreases in galactosylation and sialylation of oligosaccharides in IgGRF correlated well with the increase in RF activity. These findings could contribute to our understanding of the mechanisms of IgG-IgG complex formation and the pathogenicity of these complexes in RA patients.  相似文献   

11.

Background

Markers for longevity that reflect the health condition and predict healthy aging are extremely scarce. Such markers are, however, valuable in aging research. It has been shown previously that the N-glycosylation pattern of human immunoglobulin G (IgG) is age-dependent. Here we investigate whether N-linked glycans reflect early features of human longevity.

Methodology/Principal Findings

The Leiden Longevity Study (LLS) consists of nonagenarian sibling pairs, their offspring, and partners of the offspring serving as control. IgG subclass specific glycosylation patterns were obtained from 1967 participants in the LLS by MALDI-TOF-MS analysis of tryptic IgG Fc glycopeptides. Several regression strategies were applied to evaluate the association of IgG glycosylation with age, sex, and longevity. The degree of galactosylation of IgG decreased with increasing age. For the galactosylated glycoforms the incidence of bisecting GlcNAc increased as a function of age. Sex-related differences were observed at ages below 60 years. Compared to males, younger females had higher galactosylation, which decreased stronger with increasing age, resulting in similar galactosylation for both sexes from 60 onwards. In younger participants (<60 years of age), but not in the older age group (>60 years), decreased levels of non-galactosylated glycoforms containing a bisecting GlcNAc reflected early features of longevity.

Conclusions/Significance

We here describe IgG glycoforms associated with calendar age at all ages and the propensity for longevity before middle age. As modulation of IgG effector functions has been described for various IgG glycosylation features, a modulatory effect may be expected for the longevity marker described in this study.  相似文献   

12.
It is now well established that rheumatoid arthritis patients have reduced levels of galactose on their immunoglobulin G (IgG) molecules compared with normal individuals. We have investigated whether, in an experimentally induced model of arthritis, similar glycosylation changes on IgG are to be found. Serum IgG was isolated from collagen-induced arthritic DBA/1 mice and a control group, and the glycosylation of the IgG in these preparations was compared using lectin blotting. The glycosylation of IgG in immune complexes was also analysed. Arthritic mice exhibited similar glycosylation changes on their IgG as observed for rheumatoid arthritis patients. On average, there was less galactose on the IgG from arthritic mice than from the control group, but this difference was of borderline significance. However, theN-acetylglucosamine content of IgG was significatly elevated in arthritic mice. There was no difference in the sialic acid content of IgG in the two groups. The results for immune complexes were similar to those obtained for serum IgG, but the data were limited by insufficient numbers. The similarity in glycosylation changes in collagen-induced arthritis and in patients with rheumatoid arthritis suggests that common pathogenic mechanisms may be involved.  相似文献   

13.
Quantitative oligosaccharide profiles were determined for each of 18 human IgG paraproteins representing the four subclasses. Each paraprotein exhibits a unique profile that may be substantially different from that observed for polyclonal IgG. The IgG2 and some IgG3 proteins analysed exhibit a predominance of oligosaccharide moieties having galactose on the Man(alpha 1----3) arm rather than the Man(alpha 1----6) arm; it was previously held that galactosylation of the Man(alpha 1----6) arm is preferred, as observed for IgG1, IgG4 and polyclonal IgG. An IgG4 protein is reported that has galactosylated Man(alpha 1----3) and Man(alpha 1----6) arms on both Fc-localized carbohydrate moieties; previous findings suggested that such fully glycosylated structures could not be accommodated within the internal space of the C gamma 2 domains. Unusual monoantennary oligosaccharides present in IgG2 and IgG3 proteins were isolated and their structures determined.  相似文献   

14.

Introduction  

Improvement of rheumatoid arthritis (RA) during pregnancy has been causatively associated with increased galactosylation of immunoglobulin G (IgG) N-glycans. Since previous studies were small, did not include the postpartum flare and did not study sialylation, these issues were addressed in the present study.  相似文献   

15.
Most group A streptococcal strains are able to bind immunoglobulin (Ig) in a non-immune manner, and the majority of these strains bind both IgA and IgG. Using molecular cloning and immunochemical techniques, we have purified and characterized the Ig Fc-receptors expressed by four such strains. Two of the strains express a novel type of receptor, designated protein Sir, which binds IgA and IgG of all subclasses, and therefore has broader reactivity than any Fc-receptor previously described. The other two strains express protein Arp, a receptor that binds IgA of both subclasses, and also binds polyclonal IgG weakly. Characterization of the weak IgG-binding ability of protein Arp shows that it binds only some monoclonal IgG proteins, in particular those of the IgG3 subclass. The four strains studied here were unexpectedly found to also express a second Ig-receptor, called protein Mrp, encoded by a gene closely linked to the gene for the first receptor. The Mrp protein does not bind IgA, but it binds IgG molecules of the IgG1, IgG2 and IgG4 subclasses, and it also binds fibrinogen. Binding of fibrinogen has been reported to be a characteristic property of streptococcal M proteins, which suggests that the Mrp protein may be an M protein that also binds Ig. Taken together, all available evidence now indicates that most strains of group A streptococci express two different Ig-binding proteins, encoded by closely linked genes.  相似文献   

16.
Here, we describe a fast, easy-to-use, and sensitive method to profile in-depth structural micro-heterogeneity, including intricate N-glycosylation profiles, of monoclonal antibodies at the native intact protein level by means of mass spectrometry using a recently introduced modified Orbitrap Exactive Plus mass spectrometer. We demonstrate the versatility of our method to probe structural micro-heterogeneity by describing the analysis of three types of molecules: (1) a non-covalently bound IgG4 hinge deleted full-antibody in equilibrium with its half-antibody, (2) IgG4 mutants exhibiting highly complex glycosylation profiles, and (3) antibody-drug conjugates. Using the modified instrument, we obtain baseline separation and accurate mass determination of all different proteoforms that may be induced, for example, by glycosylation, drug loading and partial peptide backbone-truncation. We show that our method can handle highly complex glycosylation profiles, identifying more than 20 different glycoforms per monoclonal antibody preparation and more than 30 proteoforms on a single highly purified antibody. In analyzing antibody-drug conjugates, our method also easily identifies and quantifies more than 15 structurally different proteoforms that may result from the collective differences in drug loading and glycosylation. The method presented here will aid in the comprehensive analytical and functional characterization of protein micro-heterogeneity, which is crucial for successful development and manufacturing of therapeutic antibodies  相似文献   

17.
The subclass distribution of human IgG rheumatoid factor   总被引:3,自引:0,他引:3  
The subclass distribution of IgG rheumatoid factor (RF) was determined by a sensitive ELISA assay in sera from patients with rheumatoid arthritis and from normal controls. In both instances, the most important subclasses were IgG1 and IgG4. The IgG4 RF was directed against the Fc region of IgG, and recognized human as well as rabbit IgG. Although human IgG4 myeloma proteins bound to rabbit IgG better than did myelomas of other IgG subclasses, the IgG4 RF activity in rheumatoid sera showed an additional specificity, because the fraction of IgG4 RF/total IgG4 for rheumatoid arthritis sera was far greater than for myelomas. This inference was supported by the observation that there was persistent, albeit diminished, IgG RF activity in pepsin-digested, RF-containing sera (but not myeloma proteins), indicating that a critical component of IgG4 RF activity was contained within the Fab region of the IgG4 molecule. The finding of large quantities of IgG4 RF was not due to a bias of the assay, because the preponderance of IgG4 did not extend to the subclass distribution of antibodies directed against other antigens. The demonstration of an important role for IgG4 as a RF is of special interest because of the relative inability of this subclass to fix complement or to bind to Fc receptors, and because of its potential role as a mediator of increased vascular permeability.  相似文献   

18.
The impact of bcl-2 over-expression on the glycosylation pattern of an antibody produced by a bcl-2 transfected hybridoma cell line (TB/C3.bcl-2) was investigated in suspension batch, continuous and high cell density culture (Flat hollow fibre, Tecnomouse system). In all culture modes bcl-2 over-expression resulted in higher cell viability. Analysis of the glycans from the IgG of batch cultures showed that >95% of the structures were neutral core fucosylated asialo biantennary oligosaccharides with variable terminal galactosylation (G0f, G1f and G2f) consistent with previous analysis of glycans from the conserved site at Asn-297 of the IgG protein. The galactosylation index (GI) was determined as an indicator of the glycan profile (=(G2 + 0.5* G1)/(G0 + G1 + G2)). GI values in control cultures were comparable to bcl-2 cultures during exponential growth (0.53) but declined toward the end of the culture when there was a loss in cell viability. Low dilution rates in chemostat culture were associated with reduced galactosylation of the IgG glycans in both cell lines. However, at the higher dilution rates the GI for IgG was consistently higher in the TB/C3.bcl-2 cultures. In the hollow fibre bioreactor the galactosylation of the IgG glycans was considerably lower than in suspension batch or continuous cultures with GI values averaging 0.38. Similar low galactosylation values have been found previously for high density cell cultures and these are consistent with the low values obtained when the dissolved oxygen level is maintained at a low value (10%) in controlled suspension cultures of hybridomas.  相似文献   

19.
Site specific glycosylation of immunoglobulin G (IgG) occurs at Asn297 in the Fc region. The heterogeneous ensemble of glycoform occurs due to the degree of terminal galactosylation and sialylation, and these differences in glycosylation affect both the pharmacokinetic behavior and effector functions of the IgG, such as complementdependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). In this study, the differential glycosylation of IgG was compared and environmental physical and chemical parameters were evaluated in an attempt to promote glycosylation of recombinant antibodies, thereby creating more humanized glycoform antibodies and increasing their in vivo efficacy as therapeutic drugs. It was shown that cells at late stationary growth phase in batch cultures, cells with increased passage number, and the culture conditions of lowered temperature and pH promoted galactosylation and sialylation of antibodies. Galactose, fructose and mannose were found to elicit galactosylation and sialylation when they were used alone as a substitute of glucose. Mannose showed synergistic effects on glycosylation when used with other sugars, such as glucose and galactose. However when fructose was used with other sugars, the degree of galactosylation mechanism appeared to be decreased. These results support understandings of the glycosylation mechanisms in glycoprotein, particularly recombinant antibodies for therapeutics.  相似文献   

20.
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号