首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophysiological techniques were used to study ion currents in the ascidian Ciona intestinalis oocyte plasma membranes during different stages of growth and meiosis. Three stages (A, B, C) of immature oocytes were discriminated in the ovary, with the germinal vesicle (GV) showing specific different features of growth and maturation. Stage A (pre‐vitellogenic) oocytes exhibited the highest L‐type Ca2+current activity, and were incompetent for meiosis resumption. Stage B (vitellogenic) oocytes showed Na+ currents that remained high during the maturation, up to the post‐vitellogenic stage C oocytes. The latter had acquired meiotic competence, undergoing spontaneous maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation plays a specific role in embryo development. Spontaneous maturation was inhibited at low pH whereas trypsin was able to trigger germinal vesicle breakdown (GVBD) regardless of pH; in addition spontaneous maturation was not affected by removal of follicle cells or by inhibiting junctional communication between oocyte and follicle cells. Taken together these results imply: (i) Ca2+ and Na+ currents are involved in meiotic progression, growth, and acquisition of meiotic competence; (ii) trypsin‐like molecules may have a role as candidates for providing the physiological stimulus to resume meiosis. Finally, we provide evidence that follicle cells in Ciona are not involved in triggering GVBD as it occurs in other ascidians. Mol. Reprod. Dev. 76: 1084–1093, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
In ovarian follicles of Rana pipiens, frog pituitary homogenates (FPH) elevate intrafollicular progesterone levels which in turn is thought to induce meiotic resumption in the prophase I arrested oocytes. Calcium plays a role in FPH and steroid-provoked responses in the somatic and gametic components of the follicle, presumably via effects exerted at the plasma membrane of their respective target cells. Many membrane active hormones which utilize Ca2+ in their intracellular transduction also provoke membrane phosphoinositide hydrolysis yielding inositol triphosphate (IP3) and diacyl glycerol (DAG), an activator of the CA2+-dependent protein kinase C (PKC). The actions of phorbol 12-myristate 13-acetate (TPA), a potent synthetic activator of PKC, on progesterone production and oocyte maturation was examined in in vitro cultured ovarian follicles. TPA induced germinal vesicle breakdown (GVBD) in intact follicles and in oocytes denuded of somatic components, while the inactive compound phorbol 13-monoacetate was ineffective. Further, TPA induction of GVBD exhibited similarities to progesterone-induced GVBD, being inhibited by treatments which elevate cAMP or inhibit protein synthesis. TPA alone did not elevate intrafollicular or medium progesterone levels, as occurred in FPH-treated follicles. TPA partially inhibited intrafollicular progesterone accumulation induced by FPH or treatments which elevate cAMP levels. These data suggest that activation of PKC plays a role in oocyte maturation independent of follicular progesterone production as occurs in response to FPH. Further, it appears that the somatic cells of the amphibian follicle also possess PKC which when activated, antagonizes cAMP generating pathway in these cells. Results indicate that protein kinase can influence oocyte maturation in Rana follicular oocytes by several mechanisms.  相似文献   

3.
Trichlorfon (TCF), an organophosphate insecticide and potent inhibitor of choline esterases, was previously shown to induce first meiotic nondisjunction and spindle aberrations in isolated, follicle cell-denuded mouse oocytes maturing in vitro. To explore dose-response and direct and indirect, potentially synergistic effects of TCF on the somatic cells and the oocyte within a follicle, we presently employed preantral follicle culture. 100 microg/ml TCF added at the time of hormonally stimulated resumption of meiosis of follicle cell-enclosed mouse oocytes, 16 h before in vitro ovulation, induced significant rises in first meiotic nondisjunction in oocytes from preantral follicle culture. Lower concentrations (6 microg/ml TCF) disturbed polar body formation. Nuclear maturation to meiosis II in absence of cytokinesis resulted in significant increases in polyploidy. Oocytes maturing in follicles in the presence of TCF had aberrant second meiotic spindles. Influences of TCF on somatic cell function were evident by reduced follicular mucification in vitro and deceased progesterone production. In contrast to TCF, acetylcholine (0.1-100 microM) increased progesterone production. The observations therefore suggest that TCF influences oocyte maturation and folliculogenesis directly and indirectly. High TCF is aneugenic at first meiotic division in oocytes, irrespective of the presence or absence of follicle cells. At lower concentrations TCF interferes with spindle formation, chromosome congression at meiosis II, and coordination of nuclear and cytoplasmic maturation, posing risks for second meiotic errors. The observations suggest that chronic TCF exposure during maturation in the follicle may predispose oocytes to the formation of chromosomally unbalanced preimplantation embryos after fertilization.  相似文献   

4.
Immature (germinal vesicle stage) Rana pipiens oocytes typically remain arrested in prophase I of meiosis even after extended periods of in-vitro culture, if not stimulated with hormones. We have, however, sporadically observed “spontaneous” occurrences of oocyte maturation in vitro without the addition of hormones. This study documents some of our observations on this phenomenon and presents experimental results concerning the effects and possible involvement of estrogen and follicle wall components in regulating spontaneous oocyte maturation. Estrogen was found to inhibit spontaneous oocyte maturation (GVBD) in a dose-dependent fashion. Follicles in which spontaneous maturation was inhibited by estrogen retained their responsiveness (GVBD) to both frog pituitary homogenate (FPH) and progesterone stimulation. Inhibitory effects of estrogen on spontaneous maturation, however, were not reversed following incubation of washed follicles in plain culture medium without added hormones. Possible involvement of progesterone synthesis in spontaneous oocyte maturation was ascertained by simultaneously monitoring endogenous progesterone synthesis and the occurrence of spontaneous GVBD over the course of the maturation process. In spontaneous maturing follicle there was a gradual increase in basal levels of progesterone synthesis that preceded GVBD. Significantly, addition of estrogen abolished both the spontaneous progesterone production and spontaneous oocyte maturation. When FPH was added to follicles exhibiting spontaneous oocyte maturation, progesterone production was augmented and the time course of oocyte maturation was greatly accelerated. Involvement of ovarian components in the maturation process was investigated by selective removal of various follicle layers by microdissection. Removal of follicle epithelium and theca layer (defolliculation) markedly decreased spontaneous and FPH-induced maturation, whereas removal of the entire follicle wall (denudation) completely blocked it. Our results suggest that both spontaneous and FPH-induced maturation involve an estrogen sensitive process in the follicle wall. Thus, somatic follicle cells appear to serve as a common mediator for both types of maturation, which are linked by some intrafollicular mechanism involving steroidogenesis. Hence, estrogen may play an important role as an endogenous intrafollicular regulator of oocyte meiotic maturation.  相似文献   

5.
Mechanical release of oocytes from the ovary of the starfish Asterias amurensis into sea water results in “spontaneous” meiotic maturation of the oocytes. The substances blocking the maturation of Asterias oocytes have been purified from the ovary and shown to be steroid glycosides named asterosaponins A and B. The extract prepared from isolated oocytes was incapable of inhibiting oocyte maturation. The ovarian extract inhibited the production of 1-methyladenine (1-MA) in follicle cells surrounding the oocyte. The ovarian extract failed to influence 1-MA-induced maturation of the oocyte with or without follicle cells. It can be concluded from the present results that the role of the ovarian extract containing steroid glycosides is to arrest “spontaneous” production of 1-MA in follicle cells. The suppression can be overcome by the action of a gonadotropic peptide hormone released from the nerve tissue.  相似文献   

6.
We report for the first time that oocyte nuclear and cytoplasmic maturation are triggered in vitro in non-hormone-treated amphibian (Rana pipiens) ovarian follicles following transient exposure to synthetic chymotrypsin inhibitor Nα-tosyl-L-phenylalanine-chloromethyl ketone (TPCK). The mechanism of action of TPCK in regulating oocyte maturation was investigated and compared to that induced by progesterone or pituitary hormone. Follicular oocytes failed to mature following continuous exposure to the same doses of TPCK in the presence or absence of progesterone. Continuous treatment of follicles with lower levels of TPCK occasionally induced GVBD in the absence of progesterone and augmented maturational effects of low levels of progesterone. TPCK induced maturation of intrafollicular oocytes without stimulating progesterone production and also induced maturation of naked oocytes. Stimulation of follicular progesterone synthesis following gonadotropin stimulation or addition of pregnenolone was inhibited by TPCK, indicating that TPCK affects metabolic processes in both the somatic and germinal components of the ovarian follicle. Oocyte maturation induced by either TPCK or progesterone was inhibited by cycloheximide, calcium-deficient medium, and forskolin. Results suggest that TPCK induces oocyte maturation independent of steroidogenesis via mechanisms similar to those triggered by progesterone involving protein synthesis, formation of cytoplasmic maturation-promoting factor (MPF), and changes in cAMP levels. Our data indicate that a chymotrypsin-like protease plays a role(s) in regulating the oocyte meiotic maturation process.  相似文献   

7.
The role of cyclic AMP (cAMP) in ovarian follicular functions in Rana pipiens was investigated with the use of the adenylate cyclase stimulator, forskolin, which is thought to elevate intracellular level of cAMP. Effects of forskolin on oocyte germinal vesicle breakdown (GVBD) and on progesterone production by the follicles were assessed during the course of in vitro culture. Addition of forskolin to culture medium suppressed both progesterone-and frog pituitary homogenate (FPH)-induced meiotic maturation of the oocytes. Inhibitory effects of forskolin were essentially reversible and forskolin completely inhibited GVBD when added during the first four hours of incubation following exposure to progesterone. Forskolin alone stimulated a low level progesterone production by isolated follicles, but markedly stimulated progesterone production when it was supplemented with a low dose of FPH (0.005 pituitary equivalent/ml). Thus, forskolin acts synergistically with FPH on follicle cells to stimulate progesterone production. A higher dose of FPH (0.05 pitui. eq./ml) produced no additional synergistic effect of forskolin. Therefore, forskolin appears to have two contradictory functions in ovarian follicles: it augments FPH induced follicle secretion of meiosis initiator, progesterone, and simultaneously suppresses the maturation of the oocytes triggered by exogenous progesterone or FPH. The data presented indicate that there are two independent adenylate cyclase systems in the ovarian follicles which have separate functions: one in the follicle cells and the other in the oocyte. The two enzyme systems are thus compartmentalized and regulate different biological functions using the same messenger, cAMP. The data provide evidence that in amphibians, as in mammals, pituitary hormones regulate steroid hormone production by follicle cells via a cyclic AMP system. Thus, control of oocyte maturation induction appears to be determined by the relative levels of cAMP present in the follicle cells and oocytes.  相似文献   

8.
Mouse oocyte development in vitro with various culture systems   总被引:7,自引:0,他引:7  
These experiments were designed to determine whether or not hormones are required for the growth of mouse oocytes and to assess the possible role of companion granulosa cells in oocyte growth. To approach these problems, four systems for the culture of oocytes, either alone or in association with granulosa cells, were utilized: (1) isolated oocyte culture, (2) isolated oocyte-ovarian cell coculture, (3) isolated follicle culture, and (4) ovarian organ culture. Oocytes from 8-day-old B6D2F1 mice failed to grow in isolated oocyte culture. Addition of follicle-stimulating hormone (FSH), 17β-estradiol (E2), or serum to the medium failed to prevent oocyte degeneration or to promote oocyte growth. On the other hand, oocytes in isolated follicle culture or in organ culture grew significantly in defined medium. The results showed that oocytes grown in isolated follicle culture under defined conditions and in the absence of gonadotropins resemble oocytes grown in vivo in terms of their ultrastructural characteristics, with the exception of enlarged mitochondria. In addition, these oocytes were shown to exhibit some normal functional characteristics in terms of their increased levels of CO2 evolution from exogenous pyruvate, and the ability of the fully grown oocytes to initiate meiotic maturation when freed from granulosa cells. It was concluded that gonadotropins are not necessary for oocyte growth and that gonadotropins are not required to potentiate the spontaneous meiotic maturation of oocytes which occurs after their isolation from granulosa cells. The results indicated that association of granulosa cells and oocytes was necessary for oocyte growth. However, isolated oocytes in coculture with ovarian cells failed to grow. Addition of FSH or E2 to the cocultures failed to promote oocyte growth or delay oocyte degeneration. It was concluded that, under the culture conditions used, granulosa cells must be in contact with the oocyte, perhaps by means of specialized cell junctions, for oocyte growth to occur.  相似文献   

9.
Isolated oocytes from 30 unstimulated Xenopus laevis females required from 2.50 +/- 0.13 to 14.59 +/- 0.77 hr after progesterone exposure for the first 50% of each group to complete meiotic maturation. Injecting 8 females with an amount of hCG not causing ovulation (25 micrograms, 96 IU) lowered oocyte maturation times by 45-83%. An enzyme-linked immunosorbent assay (ELISA) of the blood of 18 unstimulated animals found a constituent which bound to anti-hCG in amounts (equivalent to 0-1.03 micrograms/ml hCG) that had a direct relationship to the rates of GVBD in oocytes. Preincubation of manually isolated follicles in 0.25-1.25 micrograms/ml hCG shortens oocyte maturation times by 18-50% in a direct, nonlinear fashion and this priming effect is reversed when hCG is withdrawn. The action of gonadotropins in facilitating germinal vesicle breakdown (GVBD) mimics the previously reported priming effect produced by preincubation of oocytes in subthreshold levels of progesterone. Evidence suggests that individual variation in the time course of progesterone-induced meiotic maturation of amphibian oocytes is the result of priming differences caused by the action on follicle cells of fluctuating blood levels of an LH-like hormone.  相似文献   

10.
11.
12.
13.
14.
Progesterone induces the resumption of meiotic maturation of fully grown oocytes of Rana pipiens both in vivo and in vitro. The nature of the interaction of progesterone with the oocyte was investigated using a technique which allowed the application of steroid to a portion of the oocyte surface. Uptake of [3H]progesterone from the incubation media with time and with varying concentrations of steroid was approximately proportional to the surface area exposed. After 1.5 or 24 hr of continuous exposure of a portion of the oocyte surface to [3H]progesterone, greater than 90% of the radioactivity was associated with the hemisphere exposed. Restriction of the portion of oocyte surface exposed reduced the biological potency of progesterone in the induction of maturation as assessed by germinal vesicle breakdown. Decrease in hormone effectiveness was not due to direct physical effects of the technique. Removal of the surface restriction resulted in an increase in biological activity of the steroid; this change in steroid potency was correlated with an increase in steroid distribution over the cell. Oocytes continuously exposed over a restricted part of their surface to high levels of progesterone (10 μg/ml) matured to a limited extent. After 24 hr of incubation, 55% of the oocytes exposed to 10 μg/ml of progesterone over the animal pole matured as compared to 0% of those oocytes exposed over the vegetal pole. Using [3H]progesterone, no difference was detected in the amount of steroid taken up or retained by the two polar regions. These investigations suggest that the amount of progesterone required to induce maturation is related to its distribution over the oocyte and that the animal and vegetal hemispheres differ in their ability to respond to progesterone.  相似文献   

15.
The involvement of steroid-cell surface interactions, in the induction of oocyte maturation, was investigated. A simple in vitro method was developed for the application of steroids or other substances to isolated portions of the surface of individual amphibian ovarian follicles or oocytes. The technique involved placing follicles in conical tubes between two reservoirs containing culture media. With the use of dye or radioactive tracer studies, the extent of exchange between reservoirs could be monitored and the proportion of the surface treated could be calculated.
Follicular oocytes remained viable and underwent nuclear and cytoplasmic maturation while maintained in conical tubes after a short exposure to progesterone over their total surface. Restriction of the percentage of the oocyte surface exposed to progesterone markedly reduced the incidence of meiotic maturation. Reduced responsiveness to locally applied progesterone occurred even in the presence of elevated steroid concentrations. The results suggest that the amount of follicle surface exposed to steroid is an important determinant in initiation of nuclear-cytoplasmic interactions associated with the meiotic maturation process. The procedures and results described should provide a new approach to investigating regional differences in oocyte and follicle surfaces and to studying their differentiation.  相似文献   

16.
Vasoactive intestinal peptide (VIP) is present in the rat ovary and has been shown to stimulate cyclic adenosine 3',5'-monophosphate (cAMP) and progesterone production in cultured rat granulosa cells. In the present study, VIP-stimulated cAMP production has been studied in relation to steroid accumulation and oocyte maturation in isolated preovulatory rat follicles. VIP stimulated resumption of meiosis (oocyte maturation) in up to 60% of the follicle-enclosed oocytes after 6 h at 1 microM (control, 1.8%; luteinizing hormone 99%). The effect was time- and dose-dependent up to 6 h and was seen with both natural and synthetic VIP. VIP also stimulated the accumulation of steroids (estrogen, 2.3-fold; testosterone, 2.0-fold; and progesterone, 1.6-fold increase after 6 h of incubation) and lactate (2.6-fold) by the follicles. VIP-increased tissue levels of cAMP in the follicle were dose- and time-dependent. This effect was potentiated by a phosphodiesterase inhibitor. When isolated oocyte-cumulus complexes were studied, VIP caused a transient inhibition of spontaneous oocyte maturation, and demonstrated no effect on denuded oocytes. These results extend earlier preliminary observations on the ability of VIP to induce meiotic maturation of follicle-enclosed oocytes. Our results also show that VIP can stimulate steroid and lactate accumulation in the isolated follicles. The pattern of steroids produced suggests an effect both on the theca- and granulosa cells. We also show that VIP can delay spontaneous oocyte maturation. These effects appeared, at least partially, to be mediated by cAMP.  相似文献   

17.
A continuous exposure of follicle-enclosed mouse oocytes to ovine luteinizing hormone (LH, 10 μg/ml) in vitro resulted in a 3-fold elevation of CAMP levels in the follicle cells, but not the oocytes, with subsequent oocyte maturation. When follicle-enclosed oocytes were exposed to forskolin (0.01–10 μM) for 2 hr and then incubated in forskolin-free medium (transient exposure group), oocytes underwent germinal vesicle breakdown in a dose-dependent manner. In contrast, a continuous exposure of the follicles to forskolin (10 μM) for up to 10 hr failed to induce resumption of meiosis. Follicle cell cAMP levels increased within 2 hr after the initial exposure to forskolin, and thereafter decreased rapidly regardless of whether forskolin treatment was transient or continuous. A similar transient increase in oocyte cAMP levels was observed after transient or continuous treatment with forskolin. It was evident, however, that at any time examined oocyte cAMP levels were consistently higher in the continuous exposure group than in the transient exposure group. Furthermore, a continuous exposure to forskolin also blocked LH-induced meiotic maturation. These findings suggest that elevated levels of cAMP in the oocyte block meiotic maturation in mouse oocytes. The present results further suggest that an increase in follicle cell cAMP levels is essential to the LH-induced meiotic maturation.  相似文献   

18.
Treatment of Xenopus laevis oocytes with cholesterol-depleting methyl-β-cyclodextrin (MeβCD) stimulates phosphorylation of mitogen-activated protein kinase (MAPK) and oocyte maturation, as reported previously [Sadler, S.E., Jacobs, N.D., 2004. Stimulation of Xenopus laevis oocyte maturation by methyl-β-cyclodextrin. Biol. Reprod. 70, 1685-1692.]. Here we report that treatment of oocytes with MeβCD increased levels of immunodetectable 39-kDa mos protein. The protein synthesis inhibitor, cycloheximide, blocked the appearance of Mos, blocked MeβCD-stimulated phosphorylation of MAPK, and inhibited MeβCD-induced oocyte maturation. These observations suggest that MeβCD activates the progesterone-signaling pathway. Chemical inhibition of steroid synthesis and mechanical removal of follicle cells were used to verify that MeβCD acts at the level of the oocyte and does not require production of steroid by surrounding follicle cells. Cortical Gαs is contained in low-density membrane; and treatment of oocytes with progesterone or MeβCD reduced immunodetectable levels of Gαs protein in cortices and increased internal levels of 45-kDa Gαs in cortical-free extracts. Dose-dependent increases in internal Gαs after treatment of oocytes with progesterone correlated with the steroid-induced maturation response, and the increase in internal Gαs after hormone treatment was comparable to the decrease in cortical Gαs. These results are consistent with a model in which release of Gαs from the plasma membrane is involved in activation of the progesterone-signaling pathway that leads to amphibian oocyte maturation.  相似文献   

19.
Starfish oocytes released from the ovary into sea water during the breeding season underwent spontaneous meiotic maturation. In the absence of calcium ions, follicle cells surrounding the oocyte were dispersed and oocyte maturation did not occur. Immature oocytes in the absence of follicle cells did not mature even when calcium was available. Calcium ions stimulated the release of a meiosis-inducing substance from follicle cells which had been isolated in calcium-free sea water. Increasing numbers of follicle cells produced a parallel increase in the amount of meiosis inducing substance released. Spontaneous oocyte maturation appeared to be initiated and mediated in part by calcium sensitive processes in the follicle cells rather than the oocyte.  相似文献   

20.
The activity of ornithine decarboxylase (ornithine carboxylyase E.C. 4.1.1.17) was studied during meiotic maturation induced in vitro by progesterone in follicle cell-free oocytes. Enzyme activity increased 4–6 fold during maturation, preceding germinal vesicle breakdown. The increase in ornithine decarboxylase activity was inhibited by cholera toxin, an agent that blocks meiotic maturation and increases cAMP levels within the cell. It was also prevented by cycloheximide but not by actinomycin D. Treatment of oocytes with D,L-α-difluoromethyl-ornithine, an irreversible inhibitor of ornithine decarboxylase and of putrescine synthesis, effectively abolished enzyme activity without preventing germinal vesicle breakdown. These observations show that the progesterone-induced increase in ornithine decarboxylase activity is not required for completion of meiotic division of the oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号