首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome P450 enzymes effect a wide range of oxidations in nature including difficult hydroxylation reactions of unactivated C-H. Most of the high energy reactions of these catalysts appear to involve highly electrophilic active species. Attempts to detect the reactive transients in the enzymes have met with limited success, but evidence has accumulated that two distinct electrophilic oxidants are produced in the P450 enzymes. The consensus electrophilic oxidant termed "iron-oxo" is usually thought to be an analogue of Compound I, an iron(IV)-oxo porphyrin radical cation species, but it is possible that a higher energy electronic isomer of Compound I is required to account for the facility of the C-H oxidation reactions. The second electrophilic oxidant of P450 is speculative; circumstantial evidence suggests that this species is iron-complexed hydrogen peroxide, but this oxidant might be a second spin state of iron-oxo. This overview discusses recent studies directed at detection of the electrophilic oxidants in P450 enzymes and the accumulated evidence for two distinct species.  相似文献   

2.
Cytochrome P450 enzymes promote a number of oxidative biotransformations including the hydroxylation of unactivated hydrocarbons. Whereas the long-standing consensus view of the P450 mechanism implicates a high-valent iron-oxene species as the predominant oxidant in the radicalar hydrogen abstraction/oxygen rebound pathway, more recent studies on isotope partitioning, product rearrangements with 'radical clocks', and the impact of threonine mutagenesis in P450s on hydroxylation rates support the notion of the nucleophilic and/or electrophilic (hydro)peroxo-iron intermediate(s) to be operative in P450 catalysis in addition to the electrophilic oxenoid-iron entity; this may contribute to the remarkable versatility of P450s in substrate modification. Precedent to this mechanistic concept is given by studies with natural and synthetic P450 biomimics. While the concept of an alternative electrophilic oxidant necessitates C-H hydroxylation to be brought about by a cationic insertion process, recent calculations employing density functional theory favour a 'two-state reactivity' scenario, implicating the usual ferryl-dependent oxygen rebound pathway to proceed via two spin states (doublet and quartet); state crossing is thought to be associated with either an insertion or a radicalar mechanism. Hence, challenge to future strategies should be to fold the disparate and sometimes contradictory data into a harmonized overall picture.  相似文献   

3.
Evidence for multiple functional active oxidants in cytochrome P450-catalyzed reactions was previously obtained in this laboratory with mutants in which proton delivery was perturbed by replacement of the highly conserved threonine residue in the active site by alanine, thus apparently interfering with the conversion of the peroxo-iron to the hydroperoxo-iron and the latter to the oxenoid-iron species. These enzymes have now been employed to examine the reaction in which cytochrome P450 in liver microsomes is known to effect ipso-substitution, the elimination of p-substituents in phenols to yield hydroquinone. As shown with purified NH(2)-truncated cytochromes in a reconstituted enzyme system, the reaction exhibits an absolute requirement for cytochrome P450 and NADPH-cytochrome P450 reductase. Under optimal conditions truncated cytochrome P450 2E1 is active with 10 of the p-substituted phenols examined. Of particular interest, the corresponding cytochrome with threonine-303 replaced by alanine is from 1.5- to 50-fold higher in activity with the p-chloro, -bromo, -nitro, -cyano, -hydroxymethyl, -formyl, and -acetyl derivatives, and the reaction with the p-benzoyl, -methyl, and -t-butyl compounds is catalyzed by the mutant enzyme only. The results implicate the hydroperoxo-iron species as an electrophilic active oxidant in cytochrome P450-catalyzed aromatic ipso-substitution.  相似文献   

4.
Manganese-oxo porphyrins have been well studied as biomimetic models of cytochromes P450 and are known to be able to catalyze substrate hydroxylation reactions. Recent experimental studies [J.Y. Lee, Y.-M. Lee, H. Kotani, W. Nam, S. Fukuzumi, Chem. Commun. (2009) 704] showed that Mn(V)-oxo porphyrins react rapidly with 10-methyl-9,10-dihydroacridine (AcrH(2)) via a proton-coupled-electron-transfer followed by an electron transfer. In this work, we present a computational study on the reactivity patterns of Mn(V)-oxo and Mn(IV)-oxo with respect to AcrH(2). This study shows that although both oxidants are capable of hydroxylating AcrH(2), the Mn(V)-oxo species is the more active oxidant. We have generalized these observations with thermodynamic cycles that explain the reaction mechanisms and electron transfer processes. For the Mn(V)-oxo mechanism the reactions proceed with a fast spin state crossing from the ground state singlet to the triplet spin state prior to a hydrogen atom transfer followed by another electron transfer. The present results are fully consistent with previous studies on iron-oxo porphyrins and manganese-oxo porphyrins and shows that the interplay of low lying singlet and triplet spin state surfaces influences the reaction mechanisms and kinetics.  相似文献   

5.
The in vitro and in vivo metabolism of monofluoroanilines was investigated. Special attention was focused on the regioselectivity of the aromatic hydroxylation by cytochromes P-450 and the mechanism by which this reaction might proceed. The results clearly demonstrate that the in vitro and in vivo regioselectivity of the aromatic hydroxylation by cytochromes P-450 is dependent on the fluoro-substituent pattern of the aromatic aniline-ring. Results from experiments with liver microsomes from differently pretreated rats demonstrate that the observed regioselectivity for the aromatic hydroxylation is not predominantly determined by the active site of the cytochromes P-450. To investigate the underlying reason for the observed regioselectivity, semi-empirical molecular orbital calculations were performed. Outcomes of these calculations show that neither the frontier orbital densities of the LUMO/LUMO + 1 (lowest unoccupied molecular orbital) of the monofluoroanilines nor the spin-densities in their NH. radicals can explain the observed regioselectivities. The frontier orbital densities of the HOMO/HOMO - 1 (highest occupied molecular orbital) of the monofluoroanilines however, qualitatively correlate with the regioselectivity of the aromatic hydroxylation. Based on these results it is concluded that the cytochrome P-450 dependent aromatic hydroxylation of monofluoroanilines does not proceed by hydrogen or electron abstraction from the aniline substrate to give an aniline-NH. radical. The results rather suggest that cytochrome P-450 catalyzed aromatic hydroxylation of monofluoroanilines proceeds by an electrophilic attack of the (FeO)3+ species of cytochrome P-450 on a specific carbon atom of the aromatic aniline-ring.  相似文献   

6.
C L Kuo  G M Raner  A D Vaz  M J Coon 《Biochemistry》1999,38(32):10511-10518
Aldehydes are known to inactivate cytochrome P450 in the reconstituted enzyme system containing NADPH and NADPH-cytochrome P450 reductase under aerobic conditions in a mechanism-based reaction involving heme adduct formation [Raner, G. M., Chiang, E. W. , Vaz, A. D. N., and Coon, M. J. (1997) Biochemistry 36, 4895-4902]. In the study presented here, artificial oxidants were used to examine the mechanism of aldehyde activation by purified P450 2B4 in the absence of the usual O(2)-reducing system, and the adducts that were formed were isolated and characterized. With hydrogen peroxide as the oxidant, 3-phenylpropionaldehyde gives an adduct with a mass corresponding to that of native heme modified by a phenylethyl group, presumably arising from the reaction of a peroxy-iron species with the aldehyde to give a peroxyhemiacetal, which upon deformylation yields the alkyl radical. NMR analysis indicated that the substitution is specifically at the gamma-meso position. In contrast, with m-chloroperbenzoic acid as the oxidant, an adduct is formed from 3-phenylpropionaldehyde with a mass that is consistent with the addition of a phenylpropionyl group, apparently arising by hydrogen abstraction from the aldehyde to give the carbonyl carbon radical. m-Chloroperbenzoic acid by itself forms a heme adduct with a mass corresponding to the addition of a chlorobenzoyloxy group apparently derived from homolytic oxygen-oxygen bond cleavage. These and other results with nonanal and 2-trans-nonenal support the concept that this versatile enzyme utilizes discrete oxidizing species in heme adduct formation from aldehydes.  相似文献   

7.
The metabolism of phenelzine (2-phenylethylhydrazine) by rat liver microsomes yields phenylacetaldehyde, 2-phenylethanol, and ethylbenzene. A carbon radical is formed during the oxidative metabolism of phenelzine that reacts with the prosthetic heme of cytochrome P-450 and irreversibly inactivates the enzyme. The radical has been spin-trapped, isolated, and shown by mass spectrometry to be the 2-phenylethyl radical. The metal-free pophyrin derived from the prosthetic heme group has been isolated and identified as N-(2-phenylethyl)protoporphyrin IX. The metabolism of phenelzine, an alkyl hydrazine, thus yields a carbon radical that inactivates cytochrome P-450, is converted to a hydrocarbon by hydrogen atom abstraction, and reacts with spin traps or (presumably) alternative cellular targets.  相似文献   

8.
Manganese-oxo porphyrins have been well studied as biomimetic models of cytochromes P450 and are known to be able to catalyze substrate hydroxylation reactions. Recent experimental studies [J.Y. Lee, Y.-M. Lee, H. Kotani, W. Nam, S. Fukuzumi, Chem. Commun. (2009) 704] showed that Mn(V)-oxo porphyrins react rapidly with 10-methyl-9,10-dihydroacridine (AcrH2) via a proton-coupled-electron-transfer followed by an electron transfer. In this work, we present a computational study on the reactivity patterns of Mn(V)-oxo and Mn(IV)-oxo with respect to AcrH2. This study shows that although both oxidants are capable of hydroxylating AcrH2, the MnV-oxo species is the more active oxidant. We have generalized these observations with thermodynamic cycles that explain the reaction mechanisms and electron transfer processes. For the MnV-oxo mechanism the reactions proceed with a fast spin state crossing from the ground state singlet to the triplet spin state prior to a hydrogen atom transfer followed by another electron transfer. The present results are fully consistent with previous studies on iron-oxo porphyrins and manganese-oxo porphyrins and shows that the interplay of low lying singlet and triplet spin state surfaces influences the reaction mechanisms and kinetics.  相似文献   

9.
When ultraviolet light was irradiated on a neutral solution of deoxynucleosides and hydrogen peroxide, concentrations of all the deoxynucleosides decreased greatly. Addition of bromide in the system suppressed the reactions of 2′-deoxycytidine, 2′-deoxythymidine, and 2′-deoxyadenosine, but not that of 2′-deoxyguanosine. Addition of hydroxyl radical scavengers suppressed the reaction. The effect of deuterium oxide, an enhancer of singlet oxygen, was small. It is reported that hydroxyl radical, generating from hydrogen peroxide by ultraviolet irradiation, can react with bromide forming bromine radical, and that bromine radical reacts with bromide forming dibromide radical anion. Our result of dose dependency of bromide suggests that dibromide radical anion is the reaction species to react only with 2′-deoxyguanosine.  相似文献   

10.
A new concerted mechanism is proposed for the conversion of methane to methanol on intermediate Q of soluble methane monooxygenase (sMMO), the active site of which is considered to involve an Fe2(mu-O)2 diamond core. A hybrid density functional theory (DFT) method is used for our mechanistic study on the important reactivity of the bare FeO+ complex and a diiron model of intermediate Q. The reaction pathway for the methane hydroxylation on the diiron complex is essentially identical to that for the gas-phase reaction by the bare FeO+ complex. Methane is highly activated on the dinuclear iron model through the formation of a methane complex, in which a coordinatively unsaturated iron plays a central role in the bonding interaction between the diiron model and substrate methane. A H atom abstraction via a four-centered transition state and a recombination of the OH and CH3 groups via a three-centered transition state successively occur on the dinuclear iron-oxo species, leading to the formation of a methanol complex that corresponds to intermediate T. These electronic processes take place in a concerted manner. Our mechanism for methane hydroxylation by sMMO is different from the radical mechanism that has been widely accepted for enzymatic hydrocarbon hydroxylation, especially by cytochrome P450.  相似文献   

11.
This review examines the monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450 (P450)1 enzymes and their mechanisms of action in archaeal, bacterial, and mammalian systems. In the P450 catalytic cycle, a transient iron oxo monooxygenating species is generated that reacts with substrate to produce a monooxygenated product. We describe results of early investigations that endeavored to trap and detect this elusive monooxygenating species, as well as results of experiments that attempted to generate and characterize this active oxidant spectroscopically after reacting ferric P450 enzymes with peroxy compounds (e.g. peroxides, peracids) or single oxygen atom donors (e.g. periodate, iodosobenzene). Surrogate oxidants were able to promote P450-catalyzed monooxygenations in a manner similar to that of O2/NAD(P)H, suggesting involvement of a common transitory monooxygenating species in the two pathways. This common P450 oxidant was characterized as a porphyrin radical iron(IV) oxo complex and assigned a Compound I structure (Por+FeIV=O) exhibiting a formal FeV oxidation state. Other reactive oxidants, such as the ferric oxenoid complex (PorFeIII=O), ferryloxy radical species (PorFeIV-O·), and perferryloxo entity (PorFeV=O), were also proposed to function as P450 monooxygenating species. We also discuss the possible involvement of the ferriperoxo (PorFeIII-OO-) and ferrihydroperoxo (PorFeIII-OOH) species as alternative oxidants in P450-mediated monooxygenation reactions.  相似文献   

12.
Oxidative cleavage of carboxylic esters by cytochrome P-450   总被引:1,自引:0,他引:1  
Cytochrome P-450 was demonstrated to catalyze the oxidative cleavage of carboxylic acid esters to the corresponding carboxylic acids. 2,6-Dimethyl-4-phenyl-3,5-pyridinedicarboxylic acid diethyl ester and related dialkyl esters were shown to serve as substrates in NADPH-fortified rat liver microsomes and reconstituted systems containing purified cytochrome P-450 enzymes. The ethyl group gave rise to acetaldehyde. The reactions proceed with large kinetic deuterium isotope effects, consistent with the view that P-450 abstracts a hydrogen atom in the mechanism. Oxygen rebound to the radical site is then postulated to complete the reaction and lead to a hemiacetal-like structure which collapses to give the products. Rate studies with differing alkyl substituents showed that the reaction was more rapid with removal of an ethyl than a methyl or isopropyl group, consistent with the view that the ethyl optimizes steric and inductive effects. Oxidative cleavage of carboxylic acid esters has little biochemical precedent, due to the difficult character of the reaction, and should be considered as an alternative to direct hydrolysis.  相似文献   

13.
EHT calculations have been performed on model molecules acting as substrates for mammalian mono-oxygenases. Cα---H bonds are consistently found to have larger overlap populations compared with Cβ---H and Cγ---H bonds. It is known on the other hand that metabolic hydroxylation of aliphatic carbon atoms shows a marked regioselectivity for α-carbons. The quantum-mechanical results sustain the view that C---H bonds of relatively high electronic density are preferred target sites for the cytochrome P-450-mediated oxygenation, and that the oxygen atom being activated is transformed into an electrophilic species capable of C---H bond insertion.  相似文献   

14.
Cytochrome P450 isolated from Bacillus subtilis (P450(BSbeta); molecular mass, 48 kDa) catalyzes the hydroxylation of a long-chain fatty acid (e.g. myristic acid) at the alpha- and beta-positions using hydrogen peroxide as an oxidant. We report here on the crystal structure of ferric P450(BSbeta) in the substrate-bound form, determined at a resolution of 2.1 A. P450(BSbeta) exhibits a typical P450 fold. The substrate binds to a specific channel in the enzyme and is stabilized through hydrophobic interactions of its alkyl side chain with some hydrophobic residues on the enzyme as well as by electrostatic interaction of its terminal carboxylate with the Arg(242) guanidium group. These interactions are responsible for the site specificity of the hydroxylation site in which the alpha- and beta-positions of the fatty acid come into close proximity to the heme iron sixth site. The fatty acid carboxylate group interacts with Arg(242) in the same fashion as has been reported for the active site of chloroperoxidase, His(105)-Glu(183), which is an acid-base catalyst in the peroxidation reactions. On the basis of these observations, a possible mechanism for the hydroxylation reaction catalyzed by P450(BSbeta) is proposed in which the carboxylate of the bound-substrate fatty acid assists in the cleavage of the peroxide O-O bond.  相似文献   

15.
High valent iron-oxo species are often invoked as the key oxidizing agents in the catalytic cycles of oxygen activating nonheme iron enzymes, and three of these intermediates have in fact been characterized. To gain further insight into such species, a number of biomimetic complexes have been designed and investigated as functional models for these enzymes. Progress since 2000 is summarized in this review. Many of the model complexes discussed in this review carry out oxidative transformations of relevance to the enzymatic reactions; however, the participation of a high-valent iron-oxo species (Fe(IV)O or Fe(V)O) can only be inferred. Arguments in support of a metal-based oxidant (rather than an oxygen radical species) usually hinge on the high conversion for the transformation and the nature of the reaction products, as well as the incorporation of label into these products from H(2)(18)O or related species. Within this time period, the first bona fide nonheme Fe(IV)O complexes have been generated and identified spectroscopically, three of which are crystallographically characterized. Taken together, these studies emphasize the important role the supporting polydentate ligand plays in eliciting the desired high-valent iron-oxo chemistry.  相似文献   

16.
Alpha-thujone (1alpha) and beta-thujone (1beta) were used to investigate the mechanism of hydrocarbon hydroxylation by cytochromes P-450(cam) (CYP101) and P-450(BM3) (CYP102). The thujones are hydroxylated by these enzymes at various positions, but oxidation at C-4 gives rise to both rearranged and unrearranged hydroxylation products. Rearranged products result from the formation of a radical intermediate that can undergo either inversion of stereochemistry or ring opening of the adjacent cyclopropane ring. Both of these rearrangements, as well as a C-4 desaturation reaction, are observed. The ring opening clock gives oxygen rebound rates that range from 0.2 x 10(10) to 2.8 x 10(10) s(-1) for the different substrate and enzyme combinations. The C-4 inversion reaction provides independent confirmation of a radical intermediate. The phenol product expected if a C-4 cationic rather than radical intermediate is formed is not detected. The results are consistent with a two-state process and provide support for a radical rebound but not a hydroperoxide insertion mechanism for cytochrome P-450 hydroxylation.  相似文献   

17.
From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and M?ssbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.  相似文献   

18.
Since the discovery of cytochromes P450 and their assignment to heme proteins a reactive iron-oxo intermediate as the hydroxylating species has been discussed. It is believed that the electronic structure of this intermediate corresponds to an iron(IV)-porphyrin-pi-cation radical system (Compound I). To trap this intermediate the reaction of P450 with oxidants (shunt pathway) has been used. The common approaches are stopped-flow experiments with UV-visible spectroscopic detection or rapid-mixing/freeze-quench studies with EPR and M?ssbauer spectroscopic characterization of the trapped intermediate. Surprisingly, the two approaches seem to give conflicting results. While the stopped-flow data indicate the formation of a porphyrin-pi-cation radical, no such species is seen by EPR spectroscopy, although the M?ssbauer data indicate iron(IV) for P450cam (CYP101) and P450BMP (CYP102). Instead, radicals on tyrosine and tryptophan residues are observed. These findings are reviewed and discussed with respect to intramolecular electron transfer from aromatic amino acids to a presumably transiently formed porphyrin-pi-cation radical.  相似文献   

19.
The addition of limiting amounts of cumene hydroperoxide to rat liver microsomes resulted in the rapid uptake of molecular oxygen, the formation of thiobarbituric acid reactive products, and the loss of hydroperoxide. The stoichiometry of lipid peroxidation and the yields of 2-phenyl-2-propanol (a major product of the reaction) and acetophenone (a minor product) observed with liver microsomes prepared from untreated rats is greater than that seen with liver microsomes from ciprofibrate-treated rats which, in turn, is greater than that observed with liver microsomes from phenobarbital-treated rats. The Km's and Vmax's of oxygen uptake varied with the type of rat liver microsomes used. Cytochrome P-450 substrates and inhibitors decreased the extents and initial rates of oxygen uptake and thiobarbituric acid reactive product formation. A mechanism is proposed involving the cytochrome P-450-catalyzed homolytic cleavage of the cumene hydroperoxide O-O bond to give the cumyloxyl radical. It is proposed that this oxygen-centered radical abstracts a hydrogen atom from an unsaturated fatty acid associated with a lipid (initiating lipid peroxidation) to give 2-phenyl-2-propanol or that the radical undergoes beta-scission to produce acetophenone and a methyl radical.  相似文献   

20.

Background

Small molecule fluorescent probes are vital tools for monitoring reactive oxygen species in cells.

Scope of review

The types of probe available, the extent to which they are specific or quantitative and complications in interpreting results are discussed.

Major conclusions

Most commonly used probes (e.g. dihydrodichlorofluorescein, dihydrorhodamine) have some value in providing information on changes to the redox environment of the cell, but they are not specific for any one oxidant and the response is affected by numerous chemical interactions and not just increased oxidant generation. These probes generate the fluorescent end product by a free radical mechanism, and to react with hydrogen peroxide they require a metal catalyst. Probe radicals can react with oxygen, superoxide, and various antioxidant molecules, all of which influence the signal. Newer generation probes such as boronates act by a different mechanism in which nucleophilic attack by the oxidant on a blocking group releases masked fluorescence. Boronates react with hydrogen peroxide, peroxynitrite, hypochlorous acid and in some cases superoxide, so are selective but not specific. They react with hydrogen peroxide very slowly, and kinetic considerations raise questions about how the reaction could occur in cells.

General significance

Data from oxidant-sensitive fluorescent probes can provide some information on cellular redox activity but is widely misinterpreted. Recently developed non-redox probes show promise but are not generally available and more information on specificity and cellular reactions is needed. We do not yet have probes that can quantify cellular production of specific oxidants. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号