首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Threats to mangroves from climate change and adaptation options: A review   总被引:12,自引:7,他引:5  
Mangrove ecosystems are threatened by climate change. We review the state of knowledge of mangrove vulnerability and responses to predicted climate change and consider adaptation options. Based on available evidence, of all the climate change outcomes, relative sea-level rise may be the greatest threat to mangroves. Most mangrove sediment surface elevations are not keeping pace with sea-level rise, although longer term studies from a larger number of regions are needed. Rising sea-level will have the greatest impact on mangroves experiencing net lowering in sediment elevation, where there is limited area for landward migration. The Pacific Islands mangroves have been demonstrated to be at high risk of substantial reductions. There is less certainty over other climate change outcomes and mangrove responses. More research is needed on assessment methods and standard indicators of change in response to effects from climate change, while regional monitoring networks are needed to observe these responses to enable educated adaptation. Adaptation measures can offset anticipated mangrove losses and improve resistance and resilience to climate change. Coastal planning can adapt to facilitate mangrove migration with sea-level rise. Management of activities within the catchment that affect long-term trends in the mangrove sediment elevation, better management of other stressors on mangroves, rehabilitation of degraded mangrove areas, and increases in systems of strategically designed protected area networks that include mangroves and functionally linked ecosystems through representation, replication and refugia, are additional adaptation options.  相似文献   

2.
Coral reefs have reconstituted themselves after previous large sea-level variations, and climate changes. For the past 6000 years of unusually stable sea-level, reefs have grown without serious interruptions. During recent decades, however, new stresses threaten localized devastation of many reefs. A new period of global climate change is occurring, stimulated by anthropogenic increases in greenhouse gases. Coral reefs will cope well with predicted sea-level rises of 4.5 cm per decade, but reef islands will not. Higher sea levels will provide corals with greater room for growth across reef flats, but there are no foreseeable mechanisms for reef island growth to keep pace with sea-level rise, therefore many low islands may ultimately become uninhabitable. Climate change will introduce localized variations in weather patterns, but changes to individual reefs cannot be predicted. Reefs on average should cope well with regional climate change, as they have coped with similar previous fluctuations. Air temperature increases of 0.2–0.3 °C/decade will induce slower increases in sea-surface temperatures, which may cause localized, or regional increases in coral bleaching. Changes in rainfall will impact on reefs near land masses. Likewise, increased storms and variations in El Nino Southern Oscillation (ENSO) may stress some reefs, but not others. The greatest impact of climate change will be a synergistic enhancement of direct anthropogenic stresses (excessive sediment and pollution from the land; over-fishing, especially via destructive methods; mining of coral rock and sand; and engineering modifications), which currently cause most damage to coral reefs. Many of the world's reefs have been degraded and more will be damaged as anthropogenic impacts increase under the ‘demophoric’ increases in population (demos) and economic (phoric) activity. This biotic and habitat loss will result in severe economic and social losses. Reefs, however, have considerable recovery powers and losses can be minimized by effective management of direct human impacts and reducing indirect threats of global climate change.  相似文献   

3.
全球气候变化与红树林   总被引:3,自引:0,他引:3  
刘小伟  郑文教  孙娟 《生态学杂志》2006,25(11):1418-1420
因为红树林位于海洋与陆地之间,其可能是首先被全球气候变化影响的生态系统。红树林的分布会随着温度气温的升高而增加。全球气候变化对红树林最重要的影响是海平面的变化。随着CO2的增多,大部分的红树林有高的光合作用率、水的利用效率以及生长率。在相对低的光照条件下,红树林的光合作用率相对较高。最后提出了今后尚待加强的一些研究领域。  相似文献   

4.
Mangroves are among the world's most carbon‐dense ecosystems, but they are threatened by rapid climate change and rising sea levels. The accumulation and decomposition of soil organic matter (SOM) are closely tied to mangroves' carbon sink functions and resistance to rising sea levels. However, few studies have investigated the response of mangrove SOM dynamics to likely future environmental conditions. We quantified how mangrove SOM decay is affected by predicted global warming (+4°C), sea level changes (simulated by altering of the inundation duration to 0, 2, and 6 hr/day), and their interaction. Whilst changes in inundation duration between 2 and 6 hr/day did not affect SOM decay, the treatment without inundation led to a 60% increase. A warming of 4°C caused SOM decay to increase by 21%, but longer inundation moderated this temperature‐driven increase. Our results indicate that (a) sea level rise is unlikely to decrease the SOM decay rate, suggesting that previous mangrove elevation gain, which has allowed mangroves to persist in areas of sea level rise, might result from changes in root production and/or mineral sedimentation; (b) sea level fall events, predicted to double in frequency and area, will cause periods of intensified SOM decay; (c) changing tidal regimes in mangroves due to sea level rise might attenuate increases in SOM decay caused by global warming. Our results have important implications for forecasting mangrove carbon dynamics and the persistence of mangroves and other coastal wetlands under future scenarios of climate change.  相似文献   

5.
Mangroves are biogenic systems that accumulate sedimentary sequences, where cores can provide records of mangrove species variation in distribution with past climate change and sea-level change. Fossil evidence used for palaeoecological reconstruction is based on organic remains that preserve identifying features so that they can be identified to generic levels at least. This includes macrofossils such as fruit, flowers, wood or leaves, or microfossils particularly pollen. Anaerobic conditions in mangrove sediment allow the long-term preservation of these fossil records. Fossil pollen from core samples is concentrated for microscopic examination by use of standard chemical treatments, but refinements of these are necessary for the peculiarities of mangrove peat. Pollen diagrams are expressed in concentrations, or more usefully in mangrove environments as proportions relative to others, as this has been shown to demonstrate the depositional environment actually underneath the mangrove forest. Radiocarbon dating of sedimentary sequences is used to date palaeoecological successions shown by fossil sequences, or long-term sedimentation rates. Sediment accretion in the last 50–200 years can been analysed better using Cs137 and Pb210 analyses. From pollen and macrofossils mostly recovered from stratigraphic cores of sedimentary rock and more recent sediment, the evolution and dispersal of mangroves through geological time has been reconstructed. While reconstruction of actual temperatures in these earlier records is associative to the fossil types present, it is apparent that mangroves have always been tropical species, extending to higher latitudes only during global warm periods. Many sedimentary records show mangroves deeper than the present lower limit of mangrove growth at mean sea-level. These indicate sea-level rising over time, and mangroves keeping pace with rising sea-level. Stratigraphic dating shows accretion rates of 1 mm a−1 for low island locations, and up to 1.5 mm a−1 in high islands/continental margins. Sedimentary records can also show die-off of mangroves with more rapid sea-level rise and replacement by open water during rising sea-level, landward retreat of mangrove zones, or replacement of mangroves by freshwater forest with sedimentary infill. The causes of mangrove community changes identified in the palaeoecological record can only be inferred by comparison with ecological studies in the modern environment, the link between the two that may be possible through long-term mangrove monitoring being poorly established.  相似文献   

6.
全球变暖与陆地生态系统研究中的野外增温装置   总被引:9,自引:0,他引:9       下载免费PDF全文
由于化石燃料燃烧和森林砍伐等人类活动引起的地球大气层中温室气体(主要是二氧化碳)的富集已导致全球平均温度在20世纪升高了0.6 ℃,并将在本世纪继续上升1.4~5.8 ℃。这种地质历史上前所未有的全球变暖将对陆地植物和生态系统产生深远影响,并通过全球碳循环的改变反馈于全球气候变化。作为全球变化生态学的主要研究方法之一,生态系统增温实验能够为生态模型提供参数估计和模型验证。然而由于在世界各地使用的增温装置不同,使得各个生态系统之间的结果比较和整合难以实施,增加了模型预测的不确定性。该文通过比较几种常见的野外增温装置在模拟全球变暖情形时的优缺点,指出利用不同增温装置进行全球变暖研究中应注意的一些问题;同时探讨了全球变暖控制实验研究中的一些关键性的科学问题。  相似文献   

7.
Mangrove forests play an important role in climate change adaptation and mitigation by maintaining coastline elevations relative to sea level rise, protecting coastal infrastructure from storm damage, and storing substantial quantities of carbon (C) in live and detrital pools. Determining the efficacy of mangroves in achieving climate goals can be complicated by difficulty in quantifying C inputs (i.e., differentiating newer inputs from younger trees from older residual C pools), and mitigation assessments rarely consider potential offsets to CO2 storage by methane (CH4) production in mangrove sediments. The establishment of non‐native Rhizophora mangle along Hawaiian coastlines over the last century offers an opportunity to examine the role mangroves play in climate mitigation and adaptation both globally and locally as novel ecosystems. We quantified total ecosystem C storage, sedimentation, accretion, sediment organic C burial and CH4 emissions from ~70 year old R. mangle stands and adjacent uninvaded mudflats. Ecosystem C stocks of mangrove stands exceeded mudflats by 434 ± 33 Mg C/ha, and mangrove establishment increased average coastal accretion by 460%. Sediment organic C burial increased 10‐fold (to 4.5 Mg C ha?1 year?1), double the global mean for old growth mangrove forests, suggesting that C accumulation from younger trees may occur faster than previously thought, with implications for mangrove restoration. Simulations indicate that increased CH4 emissions from sediments offset ecosystem CO2 storage by only 2%–4%, equivalent to 30–60 Mg CO2‐eq/ha over mangrove lifetime (100 year sustained global warming potential). Results highlight the importance of mangroves as novel systems that can rapidly accumulate C, have a net positive atmospheric greenhouse gas removal effect, and support shoreline accretion rates that outpace current sea level rise. Sequestration potential of novel mangrove forests should be taken into account when considering their removal or management, especially in the context of climate mitigation goals.  相似文献   

8.
In this study, we examined interactive effects of elevated atmospheric CO2, concentrations, and increased tidal flooding on two mangroves species, Avicennia marina and Rhizophora stylosa. Leaf gas-exchange parameters (photosynthesis, transpiration rates, water-use efficiency, stomatal conductance, and dark respiration rates) were measured monthly on more than 1000 two-year-old seedlings grown in greenhouses for 1 year. In addition, stomatal density and light curve responses were determined at the end of the experiment. Under elevated CO2 concentrations (800 ppm), the net photosynthetic rates were enhanced by more than 37% for A. marina and 45% for R. stylosa. This effect was more pronounced during the warm season, suggesting that an increase in global temperatures would further enhance the photosynthetic response of the considered species. Transpiration rates decreased by more than 15 and 8% for A. marina and R. stylosa, respectively. Consequently, water-use efficiency increased by 76% and 98% for A. marina and R. stylosa, respectively, for both species, which will improve drought resistance. These responses to elevated CO2 were minimized (by 5%) with longer flooding duration. Consequently, future increases of atmospheric CO2 may have a strong and positive effect on juveniles of A. marina and R. stylosa during the next century, which may not be suppressed by the augmentation of tidal flooding duration induced by sea-level rise. It is possible that this effect will enhance seedling dynamic by increasing photosynthesis, and therefore will facilitate their settlements in new area, extending the role of mangrove ecosystems in carbon sequestration and climate change mitigation.  相似文献   

9.
Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.  相似文献   

10.
General circulation models predict increases in temperature and precipitation in the Arctic as the result of increases in atmospheric carbon dioxide concentrations. Arctic ecosystems are strongly constrained by temperature, and may be expected to be markedly influenced by climate change. Perturbation experiments have been used to predict how Arctic ecosystems will respond to global climatic change, but these have often simulated individual perturbations (e.g. temperature alone) and have largely been confined to the short Arctic summer. The importance of interactions between global change variables (e.g. CO2, temperature, precipitation) has rarely been examined, and much experimentation has been short-term. Similarly, very little experimentation has occurred in the winter when General circulation models predict the largest changes in climate will take place. Recent studies have clearly demonstrated that Arctic ecosystems are not dormant during the winter and thus much greater emphasis on experimentation during this period is essential to improve our understanding of how these ecosystems will respond to global change. This, combined with more long-term experimentation, direct observation of natural vegetation change (e.g. at the tundra/taiga boundary) and improvements in model predictions is necessary if we are to understand the future nature and extent of Arctic ecosystems in a changing climate.  相似文献   

11.
Evaluating the role of terrestrial ecosystems in the global carbon cycle requires a detailed understanding of carbon exchange between vegetation, soil, and the atmosphere. Global climatic change may modify the net carbon balance of terrestrial ecosystems, causing feedbacks on atmospheric CO2 and climate. We describe a model for investigating terrestrial carbon exchange and its response to climatic variation based on the processes of plant photosynthesis, carbon allocation, litter production, and soil organic carbon decomposition. The model is used to produce geographical patterns of net primary production (NPP), carbon stocks in vegetation and soils, and the seasonal variations in net ecosystem production (NEP) under both contemporary and future climates. For contemporary climate, the estimated global NPP is 57.0 Gt C y–1, carbon stocks in vegetation and soils are 640 Gt C and 1358 Gt C, respectively, and NEP varies from –0.5 Gt C in October to 1.6 Gt C in July. For a doubled atmospheric CO2 concentration and the corresponding climate, we predict that global NPP will rise to 69.6 Gt C y–1, carbon stocks in vegetation and soils will increase by, respectively, 133 Gt C and 160 Gt C, and the seasonal amplitude of NEP will increase by 76%. A doubling of atmospheric CO2 without climate change may enhance NPP by 25% and result in a substantial increase in carbon stocks in vegetation and soils. Climate change without CO2 elevation will reduce the global NPP and soil carbon stocks, but leads to an increase in vegetation carbon because of a forest extension and NPP enhancement in the north. By combining the effects of CO2 doubling, climate change, and the consequent redistribution of vegetation, we predict a strong enhancement in NPP and carbon stocks of terrestrial ecosystems. This study simulates the possible variation in the carbon exchange at equilibrium state. We anticipate to investigate the dynamic responses in the carbon exchange to atmospheric CO2 elevation and climate change in the past and future.  相似文献   

12.
Although human activity is considered to be a major driving force affecting the distribution and dynamics of Mediterranean ecosystems, the full consequences of projected climate variability and relative sea-level changes on fragile coastal ecosystems for the next century are still unknown. It is unclear how these waterfront ecosystems can be sustained, as well as the services they provide, when relative sea-level rise and global warming are expected to exert even greater pressures in the near future (drought, habitat degradation and accelerated shoreline retreat). Haifa Bay, northern Israel, has recorded a landward sea invasion, with a maximum sea penetration 4,000 years ago, during an important period of urban development and climate instability. Here, we examine the cumulative pressure of climate shifts and relative sea-level changes in order to investigate the patterns and mechanisms behind forest replacement by an open-steppe. We provide a first comprehensive and integrative study for the southern Levant that shows that (i) human impact, through urbanization, has been the main driver behind ecological erosion in the past 4,000 years; (ii) climate pressures have reinforced this impact; and (iii) local coastal changes have played a decisive role in eroding ecosystem resilience. These three parameters, which have closely interacted during the last 4,000 years in Haifa Bay, clearly indicate that for an efficient management of the coastal habitats, anthropogenic pressures linked to urban development must be reduced in order to mitigate the predicted effects of Global Change.  相似文献   

13.
Considerable attention has focused on the climatic effects of global climate change on biodiversity, but few analyses and no broad assessments have evaluated effects of sea-level rise on biodiversity. Taking advantage of new maps of marine intrusion under scenarios of 1 and 6 m sea-level rise, we calculated areal losses for all terrestrial ecoregions globally, with areal losses for particular ecoregions ranging from nil to complete. Marine intrusion is a global phenomenon, but its effects are most prominent in Southeast Asia and nearby islands, eastern North America, northeastern South America, and western Alaska. Making assumptions regarding faunal responses to reduced distributional areas of species endemic to ecoregions, we estimated likely numbers of extinctions caused by sea-level rise, and found that marine-intrusion-caused extinctions of narrow endemics are likely to be most prominent in northeastern South America, although anticipated extinctions in smaller numbers are scattered worldwide. This assessment serves as a complement to recent estimates of losses owing to changing climatic conditions, considering a dimension of biodiversity consequences of climate change that has not previously been taken into account.  相似文献   

14.
Global change and root function   总被引:7,自引:0,他引:7  
Global change includes land-use change, elevated CO2 concentrations, increased temperature and increased rainfall variability. All four aspects by themselves and in combination will influence the role of roots in linking below- and above-ground ecosystem function via organic and inorganic resource flows. Root-mediated ecosystem functions which may be modified by global change include below-ground resource (water, nutrients) capture, creation and exploitation of spatial heterogeneity, buffering of temporal variations in above-ground factors, supply and storage of C and nutrients to the below-ground ecosystem, mobilization of nutrients and C from stored soil reserves, and gas exchange between soil and atmosphere including the emission from soil of greenhouse gases. The theory of a functional equilibrium between root and shoot allocation is used to explore predicted responses to elevated CO2 in relation to water or nutrient supply as limiting root function. The theory predicts no change in root:shoot allocation where water uptake is the limiting root function, but substantial shifts where nutrient uptake is (or becomes) the limiting function. Root turnover will not likely be influenced by elevated CO2, but by changes in regularity of water supply. A number of possible mechanisms for root-mediated N mineralization is discussed in the light of climate change factors. Rhizovory (root consumption) may increase under global change as the balance between plant chemical defense and adapted root consuming organisms may be modified during biome shifts in response to climate change. Root-mediated gas exchange allows oxygen to penetrate into soils and methane (CH4) to escape from wetland soils of tundra ecosystems as well as tropical rice production systems. The effect on net greenhouse gas emissions of biome shifts (fens replacing bogs) as well as of agricultural land management will depend partly on aerenchyma in roots.  相似文献   

15.
Abstract

Over the past 150 years the amount of CO2 in the atmosphere has been increasing, largely as a result of land-use change and anthropogenic emissions from the burning of fossil fuels. It is estimated that the atmospheric [CO2] will reach 70 Pa by the end of the 21st Century. The most important consequence of this rise in [CO2] is warming the surface temperature of the Earth by 0.4 – 0.6°C per decade throughout the 21st Century. Increasing [CO2] along with associated changes in temperature will most likely alter the structure and function of agro-ecosystems, affecting their productivity and their role as stable sinks to CO2 sequestration. Both CO2 and temperature are key variables affecting plant growth, development and functions. Moreover, because of the future scenario of higher temperature and evaporative demand, drought occurrences will be increased in frequency, intensity, and erratic pattern. The combination of elevated temperatures and the increased incidence of environmental stress will probably constitute the greatest risk caused by climate change to the agro-ecosystems in arid or semiarid areas of the world. The purpose of this paper is to review the exchange of carbon driving the main ecophysiological processes of plants in response to climate change and environmental stresses. Drought and salinity first affect the acquisition of CO2 by increasing stomatal and mesophyll resistances, and only after cause irreversible damages to the biochemical apparatus. Heat stress denatures thylakoid membranes, but this action may be counteracted by the synthesis of many isoprenoids in the chloroplasts from carbon freshly fixed by photosynthesis. There is rising concern about the impact of environmental stress on tree growth with this future scenario of global climate change. The combination of elevated temperatures and the increased incidence of environmental stress (particularly drought and salinity) will probably constitute the greatest risk caused by global climate change to the forest ecosystems in arid or semiarid areas of the world.  相似文献   

16.
Located at the mouth of the Yangtze Estuary, the Chongming Dongtan Nature Reserve is extremely vulnerable to climate change and especially to accelerated sea-level rise. We use a variety of data from remote sensing, an in situ global positioning system (GPS), tidal gauges, nautical charts, geographic spatial analysis modeling and IPCC sea-level rise scenarios to forecast the potential impacts of increased sea level on the coastal wetland habitat at Chongming Dongtan Nature Reserve. The results indicate that around 40% of the terrestrial area of the Dongtan Reserve will be inundated by the year 2100 due to an estimated 0.88 m increase in sea level. In particular, the Scirpus mariqueter communities and bare tidal flats are more vulnerable to sea-level rise. The limitations of this approach and the implication of the results for wetland and ecosystem conservation as well as management are discussed.  相似文献   

17.
Despite growing recognition of the role that cities have in global biogeochemical cycles, urban systems are among the least understood of all ecosystems. Urban grasslands are expanding rapidly along with urbanization, which is expected to increase at unprecedented rates in upcoming decades. The large and increasing area of urban grasslands and their impact on water and air quality justify the need for a better understanding of their biogeochemical cycles. There is also great uncertainty about the effect that climate change, especially changes in winter snow cover, will have on nutrient cycles in urban grasslands. We aimed to evaluate how reduced snow accumulation directly affects winter soil frost dynamics, and indirectly greenhouse gas fluxes and the processing of carbon (C) and nitrogen (N) during the subsequent growing season in northern urban grasslands. Both artificial and natural snow reduction increased winter soil frost, affecting winter microbial C and N processing, accelerating C and N cycles and increasing soil : atmosphere greenhouse gas exchange during the subsequent growing season. With lower snow accumulations that are predicted with climate change, we found decreases in N retention in these ecosystems, and increases in N2O and CO2 flux to the atmosphere, significantly increasing the global warming potential of urban grasslands. Our results suggest that the environmental impacts of these rapidly expanding ecosystems are likely to increase as climate change brings milder winters and more extensive soil frost.  相似文献   

18.
Arid savannas are regarded as one of the ecosystems most likely to be affected by climate change. In these dry conditions, even top predators like raptors are affected by water availability and precipitation. However, few research initiatives have addressed the question of how climate change will affect population dynamics and extinction risk of particular species in arid ecosystems. Here, we use an individual‐oriented modeling approach to conduct experiments on the population dynamics of long lived raptors. We investigate the potential impact of precipitation variation caused by climate change on raptors in arid savanna using the tawny eagle (Aquila rapax) in the southern Kalahari as a case study. We simulated various modifications of precipitation scenarios predicted for climate change, such as lowered annual precipitation mean, increased inter‐annual variation and increased auto‐correlation in precipitation. We found a high impact of these modifications on extinction risk of tawny eagles, with reduced population persistence in most cases. Decreased mean annual precipitation and increased inter‐annual variation both caused dramatic decreases in population persistence. Increased auto‐correlation in precipitation led only to slightly accelerated extinction of simulated populations. Finally, for various patterns of periodically fluctuating precipitation, we found both increased and decreased population persistence. In summary, our results suggest that the impacts on raptor population dynamics and survival caused by climate change in arid savannas will be great. We emphasize that even if under climate change the mean annual precipitation remains constant but the inter‐annual variation increases the persistence of raptor populations in arid savannas will decrease considerably. This suggests a new dimension of climate change driven impacts on population persistence and consequently on biodiversity. However, more investigations on particular species and/or species groups are needed to increase our understanding of how climate change will impact population dynamics and how this will influence species diversity and biodiversity.  相似文献   

19.
Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change‐induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change‐induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water‐limited ecosystems.  相似文献   

20.
Sea-level rise threatens low-lying coastal ecosystems globally. In Florida, USA, salinity stress due to increased tidal flooding contributes to the dramatic and well documented decline of species-rich coastal forest areas along the Gulf of Mexico. Here, we present the results of a study of coastal forest stand dynamics in thirteen 400 m2 plots representing an elevation gradient of 0.58–1.1 m affected by tidal flooding and rising sea levels. We extended previously published data from 1992–2000 to 2005 to quantify the full magnitude of the 1998–2002 La Niña-associated drought. Populations of the dominant tree species, Sabal palmetto (cabbage palm), declined more rapidly during 2000–2005 than predicted from linear regressions based on the 1992–2000 data. Dramatic increases in Juniperus virginiana (Southern red cedar) and S. palmetto mortality during 2000–2005 as compared with 1995–2000 are apparently due to the combined effects of a major drought and ongoing sea-level rise. Additionally, coastal forest stands continued to decline in species richness with increased tidal flooding frequency and decreasing elevation. Stable isotope (H, O) analyses demonstrate that J. virginiana accesses fresher water sources more than S. palmetto . Carbon isotopes reveal increasing δ 13C enrichment of S. palmetto and J. virginiana with increased tidal flooding and decreased elevation, demonstrating increasing water stress in both species. Coastal forests with frequent tidal flooding are unable to support species-rich forests or support regeneration of the most salt-tolerant tree species over time. Given that rates of sea-level rise are predicted to increase and periodic droughts are expected to intensify in the future due to global climate change, coastal forest communities are in jeopardy if their inland retreat is restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号