首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cooper CE 《IUBMB life》2003,55(10-11):591-597
In the mid 1990s a number of research groups recognized that mitochondrial oxygen consumption could be reversibly inhibited by nitric oxide at the level of the enzyme cytochrome c oxidase. The inhibition was apparently competitive with respect to the oxygen concentration. This review critically assesses the present state of knowledge as regards the hypothesis that nitric oxide is a competitive, reversible, physiological inhibitor of cytochrome oxidase.  相似文献   

2.
Characterization and function of mitochondrial nitric-oxide synthase   总被引:9,自引:0,他引:9  
The mitochondrial production of nitric oxide is catalyzed by a nitric-oxide synthase. This enzyme has the same cofactor and substrate requirements as other constitutive nitric-oxide synthases. Its occurrence was demonstrated in various mitochondrial preparations (intact, purified mitochondria, permeabilized mitochondria, mitoplasts, submitochondrial particles) from different organs (liver, heart) and species (rat, pig). Endogenous nitric oxide reversibly inhibits oxygen consumption and ATP synthesis by competitive inhibition of cytochrome oxidase. The increased K(m) of cytochrome oxidase for oxygen and the steady-state reduction of the electron chain carriers provided experimental evidence for the direct interaction of this oxidase with endogenous nitric oxide. The increase in hydrogen peroxide production by nitric oxide-producing mitochondria not accompanied by the full reduction of the respiratory chain components indicated that cytochrome c oxidase utilizes nitric oxide as an alternative substrate. Finally, effectors or modulators of cytochrome oxidase (the irreversible step in oxidative phosphorylation) had been proposed during the last 40 years. Nitric oxide is the first molecule that fulfills this role (it is a competitive inhibitor, produced at a fair rate near the target site) extending the oxygen gradient to tissues.  相似文献   

3.
The biochemistry of the mitochondrial production of nitric oxide is reviewed to gain insight into the basic role of this radical in mitochondrial and cellular oxidative metabolism. The mitochondrial production of nitric oxide is catalyzed by a nitric-oxide synthase (mtNOS). This enzyme has the same cofactor and substrate requirements as other constitutive nitric-oxide synthases. Its occurrence was demonstrated in various mitochondrial preparations from different organs and species using diverse approaches (oxidation of oxymyoglobin, electron paramagnetic resonance in conjunction with spin trap, radiolabeled L-arginine, immunohistochemistry, nitric-oxide electrode). MtNOS has been identified as the alpha isoform of nNOS, acylated at a Thr or Ser residue, and phosphorylated at the C-terminal end. Endogenous nitric oxide reversibly inhibits oxygen consumption and ATP synthesis by competitive inhibition of cytochrome oxidase. Nitric oxide is the first molecule that fulfills the requirement for a cytochrome oxidase activity modulator: it is a competitive inhibitor, produced endogenously at a fair rate near the target site, at concentrations high enough to exhibit an inhibitory effect on cytochrome oxidase. The role of the mitochondrial nitric oxide production is discussed in terms of the physiological (modulating oxygen gradients into tissues) and pathological (abrogation of oxygen gradient modification, apoptosis, protein nitrative/oxidative stress) implications.  相似文献   

4.
Abstract: Nitric oxide may regulate cellular respiration by competition with oxygen at mitochondrial cytochrome oxidase. Using an astrocyte-derived cell line, we have compared the mechanism of action of the nitric oxide-generating compound Roussin's black salt with that of sodium nitroprusside on cellular oxygen consumption. Intense light exposure induced the release of large quantities of nitric oxide from both of the donor compounds. However, in room light only Roussin's black salt generated low levels of the radical. Simultaneous measurement of oxygen consumption and of nitric oxide production demonstrated that sodium nitroprusside only had inhibitory actions when exposed to intense light (nitric oxide release), whereas Roussin's black salt had inhibitory actions in room light. Extracellular haemoglobin did not prevent the inhibition of respiration rate induced by Roussin's black salt even though stimulation of nitric oxide release on light exposure was markedly reduced. Preincubation of cells with Roussin's black salt and subsequent measurement of levels of light-liberated nitric oxide demonstrated that the compound was rapidly internalised. The uptake of sodium nitroprusside was minimal. These data suggest that, in contrast to sodium nitroprusside, the cellular internalisation of Roussin's black salt allows site-directed nitric oxide release and very effective inhibition of cellular respiration.  相似文献   

5.
Nitric oxide biosynthesis in cardiac muscle leads to a decreased oxygen consumption and lower ATP synthesis. It is suggested that this effect of nitric oxide is mainly due to the inhibition of the mitochondrial respiratory chain enzyme, cytochrome c oxidase. However, this work demonstrates that nitric oxide is able to inhibit soluble mitochondrial creatine kinase (CK), mitochondrial CK bound in purified mitochondria, CK in situ in skinned fibres as well as the functional activity of mitochondrial CK in situ in skinned fibres. Since mitochondrial isoenzyme is functionally coupled to oxidative phosphorylation, its inhibition also leads to decreased sensitivity of mitochondrial respiration to ADP and thus decreases ATP synthesis and oxygen consumption under physiological ADP concentrations.  相似文献   

6.
An apparent discrepancy arises about the role of calcium on the rates of oxygen consumption by mitochondria: mitochondrial calcium increases the rate of oxygen consumption because of the activation of calcium-activated dehydrogenases, and by activating mitochondrial nitric oxide synthase (mtNOS), decreases the rates of oxygen consumption because nitric oxide is a competitive inhibitor of cytochrome oxidase. To this end, the rates of oxygen consumption and nitric oxide production were followed in isolated rat liver mitochondria in the presence of either L-Arg (to sustain a mtNOS activity) or N(G)-monomethyl-L-Arg (NMMA, a competitive inhibitor of mtNOS) under State 3 conditions. In the presence of NMMA, the rates of State 3 oxygen consumption exhibited a K(0.5) of 0.16 microM intramitochondrial free calcium, agreeing with those required for the activation of the Krebs cycle. By plotting the difference between the rates of oxygen consumption in State 3 with L-Arg and with NMMA at various calcium concentrations, a K(0.5) of 1.2 microM intramitochondrial free calcium was obtained, similar to the K(0.5) (0.9 microM) of the dependence of the rate of nitric oxide production on calcium concentrations. The activation of dehydrogenases, followed by the activation of mtNOS, would lead to the modulation of the Krebs cycle activity by the modulation of nitric oxide on the respiratory rates. This would ensue in changes in the NADH/NAD and ATP/ADP ratios, which would influence the rate of the cycle and the oxygen diffusion.  相似文献   

7.
8.
Mitochondrial cytochrome oxidase is competitively and reversibly inhibited by inhibitors that bind to ferrous heme, such as carbon monoxide and nitric oxide. In the case of nitric oxide, nanomolar levels inhibit cytochrome oxidase by competing with oxygen at the enzyme's heme-copper active site. This raises the Km for cellular respiration into the physiological range. This effect is readily reversible and may be a physiological control mechanism. Here we show that a number of in vitro and in vivo conditions result in an irreversible increase in the oxygen Km. These include: treatment of the purified enzyme with peroxynitrite or high (μM) levels of nitric oxide; treatment of the endothelial-derived cell line, b.End5, with NO; activation of astrocytes by cytokines; reperfusion injury in the gerbil brain. Studies of cell respiration that fail to vary the oxygen concentration systematically are therefore likely to significantly underestimate the degree of irreversible damage to cytochrome oxidase.  相似文献   

9.
This review summarises current knowledge about the effect of oxygen on cytochrome oxidase activity in vitro and in vivo. Cytochrome oxidase normally operates above its K(m) for oxygen in vivo. However, decreases in the intracellular oxygen concentration (hypoxia) under physiological extremes, or during pathophysiology, can cause mitochondrial respiration to become oxygen limited. Inhibitors that raise the enzyme's K(m) will induce oxygen limitation under apparently normoxic conditions. It is known that the concentrations of nitric oxide and peroxynitrite are raised in a number of pathophysiological conditions. These compounds are capable of reversibly and irreversibly raising the cytochrome oxidase K(m) for oxygen. Therefore, measurements of cell and mitochondrial respiration in vitro that fail to systematically vary oxygen through the range of physiological concentrations are likely to underestimate the effects of nitric oxide and peroxynitrite in vivo.  相似文献   

10.
Endogenously produced nitric oxide (NO) controls oxygen consumption by inhibiting cytochrome c oxidase, the terminal electron acceptor of the mitochondrial electron transport chain. The oxygen-binding site of the enzyme is an iron/copper (haem a3/CuB) binuclear centre. At high substrate (ferrocytochrome c) concentrations, NO binds reversibly to the reduced iron in competition with oxygen. At low substrate concentrations, NO binds to the oxidized copper. Inhibition at the haem iron site is relieved by dissociation of the NO from the reduced iron. Inhibition at the copper site is relieved by oxidation of the bound NO and subsequent dissociation of nitrite from the enzyme. Therefore, NO can be a substrate, inhibitor or effector of cytochrome oxidase, depending on cellular conditions.  相似文献   

11.
Microglial activation, oxidative stress, and dysfunctions in mitochondria, including the reduction of cytochrome oxidase activity, have been implicated in neurodegeneration. The current experiments tested the effects of reducing cytochrome oxidase activity on the ability of microglia to respond to inflammatory insults. Inhibition of cytochrome oxidase by azide reduced oxygen consumption and increased reactive oxygen species (ROS) production but did not affect cell viability. Azide also attenuated microglial activation, as measured by nitric oxide (NO.) production in response to lipopolysaccharide (LPS). It is surprising that the inhibition of cytochrome oxidase also diminished the activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a Krebs cycle enzyme. This reduction was exaggerated when the azide-treated microglia were also treated with LPS. The combination of the azide-stimulated ROS and LPS-induced NO. would likely cause peroxynitrite formation in microglia. Thus, the possibility that KGDHC was inactivated by peroxynitrite was tested. Peroxynitrite inhibited the activity of isolated KGDHC, nitrated tyrosine residues of all three KGDHC subunits, and reduced immunoreactivity to antibodies against two KGDHC components. Thus, our data suggest that inhibition of the mitochondrial respiratory chain diminishes aerobic energy metabolism, interferes with microglial inflammatory responses, and compromises mitochondrial function, including KGDHC activity, which is vulnerable to NO. and peroxynitrite that result from microglial activation. Thus, activation of metabolically compromised microglia can further diminish their oxidative capacity, creating a deleterious spiral that may contribute to neurodegeneration.  相似文献   

12.
The present study shows that nitric oxide (NO) irreversibly inhibits purified cytochrome oxidase in a reverse oxygen concentration-dependent manner. The inhibition is dramatically protected by a peroxynitrite scavenger, suggesting that peroxynitrite is formed from the reaction of NO with cytochrome oxidase at low oxygen concentration, and that peroxynitrite is involved in irreversible cytochrome oxidase inactivation. Production of nitroxyl anion or superoxide was tested as potential mechanisms underlying the conversion of NO to peroxynitrite. A nitroxyl anion scavenger potently protected the irreversible inhibition, whereas a superoxide dismutase did not provide protective effect, suggesting that the peroxynitrite was formed from nitroxyl anion rather than the reaction of NO with superoxide.  相似文献   

13.
Dopamine and nitric oxide systems can interact in different processes in the central nervous system. Dopamine and oxidation products have been related to mitochondrial dysfunction. In the present study, intact mitochondria and submitochondrial membranes were incubated with different DA concentrations for 5 min. Dopamine (1 mM) increased nitric oxide production in submitochondrial membranes and this effect was partially prevented in the presence of both DA and NOS inhibitor N(omega)-nitro-L-arginine (L-NNA). A 46% decrease in state 3 oxygen uptake (active respiration state) was found after 15 mM dopamine incubation. When mitochondria were incubated with 15 mM dopamine in the presence of L-NNA, state 3 respiratory rate was decreased by only 17% showing the involvement of NO. As shown for O(2) consumption, the inhibition of cytochrome oxidase by 1 mM DA was mediated by NO. Hydrogen peroxide production significantly increased after 15 mM DA incubation, being mainly due to its metabolism by MAO. Also, DA-induced depolarization was prevented by the addition of L-NNA showing the involvement of nitric oxide in this process too. This work provides evidence that in the studied conditions, dopamine modifies mitochondrial function by a nitric oxide-dependent pathway.  相似文献   

14.
David C. Unitt 《BBA》2010,1797(3):371-532
We have developed a respiration chamber that allows intact cells to be studied under controlled oxygen (O2) conditions. The system measures the concentrations of O2 and nitric oxide (NO) in the cell suspension, while the redox state of cytochrome c oxidase is continuously monitored optically. Using human embryonic kidney cells transfected with a tetracycline-inducible NO synthase we show that the inactivation of NO by cytochrome c oxidase is dependent on both O2 concentration and electron turnover of the enzyme. At a high O2 concentration (70 μM), and while the enzyme is in turnover, NO generated by the NO synthase upon addition of a given concentration of l-arginine is partially inactivated by cytochrome c oxidase and does not affect the redox state of the enzyme or consumption of O2. At low O2 (15 μM), when the cytochrome c oxidase is more reduced, inactivation of NO is decreased. In addition, the NO that is not inactivated inhibits the cytochrome c oxidase, further reducing the enzyme and lowering O2 consumption. At both high and low O2 concentrations the inactivation of NO is decreased when sodium azide is used to inhibit cytochrome c oxidase and decrease electron turnover.  相似文献   

15.
Hypoxia/ischaemia is known to trigger neuronal death, but the role of neuronal nitric oxide synthase (nNOS) in this process is controversial. Nitric oxide (NO) inhibits cytochrome oxidase in competition with oxygen. We tested whether NO derived from nNOS synergises with hypoxia to induce neuronal death by inhibiting mitochondrial cytochrome oxidase. Sixteen hours of hypoxia (2% oxygen) plus deoxyglucose (an inhibitor of glycolysis) caused extensive, excitotoxic death of neurons in rat cerebellar granule cell cultures. Three different nNOS inhibitors (including the selective inhibitor N-4S-4-amino-5-2-aminoethyl-aminopentyl-N'-nitroguanidine) decreased this neuronal death by half, indicating a contribution of nNOS to hypoxic death. The selective nNOS inhibitor did not, however, block neuronal death induced either by added glutamate or by added azide (an uncompetitive inhibitor of cytochrome oxidase), indicating that nNOS does not act downstream of glutamate or cytochrome oxidase. Hypoxia plus deoxyglucose-induced glutamate release and neuronal depolarisation, and the nNOS inhibitor decreased this. Hypoxia inhibited cytochrome oxidase activity in the cultures, but a selective nNOS inhibitor prevented this inhibition, indicating NO from nNOS was inhibiting cytochrome oxidase in competition with oxygen. These data indicate that hypoxia synergises with NO from nNOS to induce neuronal death via cytochrome oxidase inhibition causing neuronal depolarisation. This mechanism might contribute to ischaemia/stroke-induced neuronal death in vivo.  相似文献   

16.
Nitric oxide (NO) is an intercellular signaling molecule; among its many and varied roles are the control of blood flow and blood pressure via activation of the heme enzyme, soluble guanylate cyclase. A growing body of evidence suggests that an additional target for NO is the mitochondrial oxygen-consuming heme/copper enzyme, cytochrome c oxidase. This review describes the molecular mechanism of this interaction and the consequences for its likely physiological role. The oxygen reactive site in cytochrome oxidase contains both heme iron (a3) and copper (CuB) centers. NO inhibits cytochrome oxidase in both an oxygen-competitive (at heme a3) and oxygen-independent (at CuB) manner. Before inhibition of oxygen consumption, changes can be observed in enzyme and substrate (cytochrome c) redox state. Physiological consequences can be mediated either by direct "metabolic" effects on oxygen consumption or via indirect "signaling" effects via mitochondrial redox state changes and free radical production. The detailed kinetics suggest, but do not prove, that cytochrome oxidase can be a target for NO even under circumstances when guanylate cyclase, its primary high affinity target, is not fully activated. In vivo organ and whole body measures of NO synthase inhibition suggest a possible role for NO inhibition of cytochrome oxidase. However, a detailed mapping of NO and oxygen levels, combined with direct measures of cytochrome oxidase/NO binding, in physiology is still awaited. mitochondria; cytochrome oxidase  相似文献   

17.
Haem is used as a versatile receptor for redox active molecules; most notably NO (nitric oxide) and oxygen. Three haem-containing proteins, myoglobin, haemoglobin and cytochrome c oxidase, are now known to bind NO, and in all these cases competition with oxygen plays an important role in the biological outcome. NO also binds to the haem group of sGC (soluble guanylate cyclase) and initiates signal transduction through the formation of cGMP in a process that is oxygen-independent. From biochemical studies, it has been shown that sGC is substantially more sensitive to NO than is cytochrome c oxidase, but a direct comparison in a cellular setting under various oxygen levels has not been reported previously. In this issue of the Biochemical Journal, Cadenas and co-workers reveal how oxygen can act as the master regulator of the relative sensitivity of the cytochrome c oxidase and sGC signalling pathways to NO. These findings have important implications for our understanding of the interplay between NO and oxygen in both physiology and the pathology of diseases associated with hypoxia.  相似文献   

18.
Nitric oxide is generated in vivo by nitric-oxide synthase (NOS) during the conversion of L-Arg to citrulline. Using a variety of biological systems and approaches emerging evidence has been accumulated for the occurrence of a mitochondrial NOS (mtNOS), identified as the alpha isoform of neuronal or NOS-1. Under physiological conditions, the production of nitric oxide by mitochondria has an important implication for the maintenance of the cellular metabolism, i.e. modulates the oxygen consumption of the organelles through the competitive (with oxygen) and reversible inhibition of cytochrome c oxidase. The transient inhibition suits the continuously changing energy and oxygen requirements of the tissue; it is a short-term regulation with profound pathophysiological consequences. This review describes the identification of mtNOS and the role of posttranslational modifications on mtNOS' activity and regulation.  相似文献   

19.
Analía Czerniczyniec 《BBA》2007,1767(9):1118-1125
Dopamine and nitric oxide systems can interact in different processes in the central nervous system. Dopamine and oxidation products have been related to mitochondrial dysfunction. In the present study, intact mitochondria and submitochondrial membranes were incubated with different DA concentrations for 5 min. Dopamine (1 mM) increased nitric oxide production in submitochondrial membranes and this effect was partially prevented in the presence of both DA and NOS inhibitor Nω-nitro-l-arginine (l-NNA). A 46% decrease in state 3 oxygen uptake (active respiration state) was found after 15 mM dopamine incubation. When mitochondria were incubated with 15 mM dopamine in the presence of l-NNA, state 3 respiratory rate was decreased by only 17% showing the involvement of NO. As shown for O2 consumption, the inhibition of cytochrome oxidase by 1 mM DA was mediated by NO. Hydrogen peroxide production significantly increased after 15 mM DA incubation, being mainly due to its metabolism by MAO. Also, DA-induced depolarization was prevented by the addition of l-NNA showing the involvement of nitric oxide in this process too. This work provides evidence that in the studied conditions, dopamine modifies mitochondrial function by a nitric oxide-dependent pathway.  相似文献   

20.
The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H2S is not. NO and H2S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H2S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号