首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical characteristics of kanamycin onto self-assembled monolayer (SAM) modified gold electrode (SAM/Au) is investigated by cyclic voltammetry. In the potential range 0-0.6 V, Cu(II) yields a pair of stable redox waves at the bare gold electrode. E(pa) is located at 0.189 V and E(pc) at 0.254 V. In contrast, Cu(II) is reduced at a more positive potential and a decreasing current at the kanamycin SAM/Au electrode. Cu(II) and kanamycin can form a stoichiometry complex with chemical ratio of 2:1. The interaction of Cu(II)-kanamycin complex with calf thymus DNA is also studied in the solution. And the interactive mode between Cu(II)-kanamycin complex and DNA is verified by the fluorescence method. Binding constants (K) of the Cu(II)-kanamycin complex to DNA and binding site size (s) are calculated from voltammetric data and equal to 1.5 x 10(7) l/mol and 4 bp, respectively.  相似文献   

2.
The interactions of copper(II) complexes of kanamycin A with oxidation-susceptible biomolecules: 2'-deoxyguanosine, plasmid DNA and yeast tRNA(Phe) were studied in both the presence and absence of hydrogen peroxide. The mixture of complex with H(2)O(2) was found to be an efficient oxidant, converting dG to its 8-oxo derivative, generating strand breaks in plasmid DNA and multiple cleavages in tRNA(Phe). Some of these reactions may play a role in toxic effects of aminoglycoside antibiotics. These complexes were screened for their antibacterial activity. The microbiological studies undertaken to compare the bactericidal action of kanamycin A alone and complexed with copper(II) ions in both neutral and oxidative environment revealed that the enhancement of bactericidal action by Cu(II) was not statistically significant.  相似文献   

3.
Astrocytes are a very important cell type in the brain fulfilling roles in both neuroimmunology and neurotransmission. We have conducted the most comprehensive analysis of secreted cytokines conducted to date (astrocytes of any source) to determine whether astrocytes derived from the human Ntera2 (NT2) cell-line are a good model of human primary astrocytes. We have compared the secretion of cytokines from NT2 astrocytes with those produced in astrocyte enriched human brain cultures and additional cytokines implicated in brain injury or known to be expressed in the human brain. The concentration of cytokines was measured in astrocyte conditioned media using multiplex bead array (MBA), where 18 cytokines were measured simultaneously. Resting NT2 astrocytes produced low levels (~1-30 pg/ml) of MIP1α, IL-6 and GM-CSF and higher levels of MCP-1, IP-10 and IL-8 (1-11 ng/ml) under non-inflammatory conditions. All of these in addition to IL-1β, TNFα, and IL-13, were increased by pro-inflammatory activation (TNFα or IL-1β stimulation). In contrast, IL-2, IL-4, IL-5, IL-7, IL-10, IL-12, LTα, and IFNγ were not detected in astrocyte conditioned media under any of the culture conditions tested. NT2 astrocytes were unresponsive to IL-2 and the adenyl cyclase agonist, forskolin. Interestingly, IFNγ stimulation selectively increased IP-10 secretion only. As astrocytes stimulated with IL-1β or TNFα produced several chemokines in the ng/ml range, we next assessed the chemoattractant properties of these cells. Conditioned media from TNFα-stimulated astrocytes significantly chemoattracted leukocytes from human blood. This study provides the most comprehensive analysis of cytokine production by human astrocytes thus far, and shows that NT2 astrocytes are highly responsive to pro-inflammatory mediators including TNFα and IL-1β, producing cytokines and chemokines capable of attracting leukocytes from human blood. We conclude that in the absence of adult human primary astrocytes that NT2-astrocytes may provide a valuable alternative to study the immunological behaviour of human astrocytes.  相似文献   

4.
In this paper, the complex formation of bovine serum albumin (BSA) and polyacrylic acid (PAA) in the presence metal ions at pH = 7 has been examined by using fluorescence and dynamic light scattering measurements. It has been observed that the most stable complexes of polyacrylic acid and bovine serum albumin have occurred in the presence of copper(II) ions. The other ions have the ability to form weak complexes between polyions and bovine serum albumin. To prior characterizing the interaction between bovine serum albumin and polyacrylic acid, the dynamic light scattering technique have been applied to determine the intensity-size distributions of the solutions of bovine serum albumin, polyacrylic acid, and ternary mixtures containing various molar ratios of bovine serum albumin to polyacrylic acid (the molar ratios of bovine serum albumin to polyacrylic acid has been taken equal to 0.5, 1.0, 1.5, 2.0 and 2.5) prepared at different molar ratios of copper(II) ions/acrylic acid unit. When the molar ratio of copper(II) ions to acrylic acid in the ternary mixtures has been lower than and equals to 0.3, two peaks have been observed in the curves of the intensity-size distributions due to contents of free bovine serum albumin and ternary complexes of polyacrylic acid-copper(II)-bovine serum albumin whereas when the molar ratio of copper(II) ions to acrylic acid equals to 0.4, the hydrodynamic diameter has pointed out only one peak. This result indicates that soluble and stable ternary complexes has occurred when the molar ratio of copper(II) ions to acrylic acid has been taken equal to 0.4.  相似文献   

5.
The binding of Cu(II) to native human, porcine, bovine and ovine ceruloplasmin (Cp) and to bovine serum albumin (bSA) has been studied at pH 7.4, 30 mM barbital buffer. The results were analyzed for the strength and the number of binding sites using Scatchard plots. Evidence for additional copper binding sites in Cp and bSA was obtained suggesting a role for copper ion in the homeostatic regulation of Cu(II) and other metal ions in the serum. In the binding studies the Cp was freed of exogenous Cu(II) by passing it over a Chelex-100 column. Two flow rates were used, 4 ml/hr and 40 ml/hr, which removed Cu(II) of different affinities. Cp passed at the slower flow rate (Cp4) only contained the prosthetic copper atoms. Cp passed at the faster flow rate (Cp40) contained one additional copper atom with a Ka approximately 10(7) M-1. Another 2-6 Cu(II) ion could be added to the Cp40 with an average affinity of about Ka approximately 10(5) M-1. The Cu(II) ions found in Cp provide two distinguishable classes: (1) the prosthetic copper atoms and (2) the exogenous copper atoms that can be removed by Chelex-100. For bSA one copper atom was bound strongly with a Ka value approaching 10(12) - 10(13) M-1 and was not removed by Chelex-100 at any flow rate. A second copper atom was found with a Ka = 5.2 x 10(6) M-1 and was removed by Chelex-100 at 4 ml/hr. Three additional copper atoms were bound with a Ka = 1.6 x 10(5) M-1; they were readily removed by Chelex-100 at 40 ml/hr but were nondialysable.  相似文献   

6.
The single crystals of coordinated complexes of neutral erythritol (C4H10O4) with various transition metal ions were synthesized and studied using FT-IR and single crystal X-ray diffraction analysis. Two CuCl2-erythritol complexes (denoted as CuE(I) and CuE(II)) were obtained. In CuE(I), Cu2+ coordinates with two chloride ions and four OH groups from two erythritol molecules. Two copper centers are linked by one erythritol molecule to form a zigzag chain. For CuE(II), each Cu2+ coordinates with two OH groups from an erythritol molecule and two chloride ions. The crystal of CuE(II) contains complexed and free erythritol, the dimers of [Cu2Cl4(C4H10O4)] further form a [Cu2Cl4(C4H10O4)]infinity chain via secondary Cu...Cl bonds, both the dimer unit of [Cu2Cl4.(C4H10O4)] and non-coordinated C4H10O4 unit exist side by side in the crystal. MnCl2-erythritol complex whose structure is similar to CuE(I) is also acquired. The OH groups of erythritol act as ligand to coordinate to metal ions on one hand, one the other hand, OH groups form hydrogen bonds network that link chain and layer together to build three-dimensional structures.  相似文献   

7.
Copper is an essential micronutrient in humans and is required for a wide range of physiological processes, including neurotransmitter biosynthesis, oxidative metabolism, protection against reactive oxygen species, and angiogenesis. The first step in the acquisition of dietary copper is absorption from the intestinal lumen. The major human high-affinity copper uptake protein, human copper transporter hCTR1, was recently shown to be at the basolateral or blood side of both intestinal and renal epithelial cell lines and thus does not play a direct role in this initial step. We sought to functionally identify the major transport pathways available for the absorption of dietary copper across the apical intestinal membrane using Caco2 cells, a well-established model for human enterocytes. The initial rate of apical copper uptake into confluent monolayers of Caco2 cells is greatly elevated if amino acids and serum proteins are removed from the growth media. Uptake from buffered saline solutions at neutral pH (but not at lower pH) is inhibited by either d- or l-histidine, unaltered by the removal of sodium ions, and inhibited by ~90% when chloride ions are replaced by gluconate or sulfate. Chloride-dependent copper uptake occurs with Cu(II) or Cu(I), although Cu(I) uptake is not inhibited by histidine, nor by silver ions. A well-characterized inhibitor of anion exchange systems, DIDS, inhibited apical copper uptake by 60-70%, while the addition of Mn(II) or Fe(II), competitive substrates for the divalent metal transporter DMT1, had no effect on copper uptake. We propose that anion exchangers play an unexpected role in copper absorption, utilizing copper-chloride complexes as pseudo-substrates. This pathway is also observed in mouse embryonic fibroblasts, human embryonic kidney cells, and Cos-7 cells. The special environment of low pH, low concentration of protein, and protonation of amino acids in the early intestinal lumen make this pathway especially important in dietary copper acquisition.  相似文献   

8.
The addition of copper and zinc salts to human peripheral blood leukocytes cultured in complete medium containing endotoxin and fetal calf serum stimulated tumor necrosis factor (TNF) secretion in a concentration-dependent manner. The secretion of interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6) was inhibited by copper under the same culture conditions, while zinc stimulated IL-1 beta secretion in a concentration-dependent manner and had no effect on leukocyte IL-6 release. Both copper and zinc induced increases in TNF mRNA (54 and 14%, respectively) when compared to cells cultured in complete medium alone. In serum-free, low endotoxin medium (less than 6 pg/ml), both copper and zinc failed to stimulate either TNF or IL-1 beta secretion. Under the same conditions the addition of lipopolysaccharide (LPS), at concentrations above 0.01 micrograms/ml, induced a concentration-dependent release of both cytokines. When either copper or zinc were combined with 0.01 micrograms/ml LPS, a synergistic stimulation of TNF secretion resulted. IL-1 beta secretion, unlike TNF, was not synergistically stimulated by combining metals and LPS in serum-free medium. Combining copper and zinc with inhibitors of TNF secretion, transforming growth factor beta, prostaglandin E2, and plasma alpha-globulins, resulted in a reduction of the suppressive effects of each of these agents. This study suggests that the trace metals copper and zinc may play important and possibly distinct roles in regulating leukocyte secretion of TNF, IL-1 beta, and IL-6.  相似文献   

9.
We have studied the Cu(II), Co(II), and Fe(III) complexes of the antineoplastic drug bleomycin by using electron spin--echo envelope spectroscopy. For all three complexes, nitrogen coordination of the metal ions is demonstrated. For the Cu(II)-- and Co(II)--drug complexes, we have been able to identify imidazole as a metal ligand.  相似文献   

10.
11.
Serum albumins being the most abundant proteins in the blood and cerebrospinal fluid are significant carriers of essential transition metal ions in the human body. Studies of copper (II) complexes have gained attention because of their potential applications in synthetic, biological, and industrial processes. Study of binding interactions of such bioinorganic complexes with serum albumins improves our understanding of biomolecular recognition process essential for rational drug design. In the present investigation, we have applied quantitative approach to explore interactions of novel synthesized copper (II) complexes viz. [Cu(L1)(L2)ClO4] (complex I), [Cu(L2)(L3)]ClO4] (complex II) and [Cu(L4)2(H2O)2] (complex III) with bovine serum albumin (BSA) to evaluate their binding characteristics, site and mode of interaction. The fluorescence quenching of BSA initiated by complexation has been observed to be static in nature. The binding interactions are endothermic driven by entropic factors as confirmed by high sensitivity isothermal titration calorimetry. Changes in secondary and tertiary structure of protein have been studied by circular dichroism and significant reduction in α-helical content of BSA was observed upon binding. Site marking experiments with warfarin and ibuprofen indicated that copper complexes bind at site II of the protein.  相似文献   

12.
The equilibrium and solution structural properties of the iron(III) and copper(II) complexes of an asymmetric salen-like ligand (N,N'-bis(2-hydroxybenzyl)-2,3-diamino-propionic acid, H(3)bhbdpa) bearing a pendant carboxylate group were characterized in aqueous solution by potentiometric, pH-dependent electron paramagnetic resonance (EPR) and UV-Vis (UV-Visible) measurements. In the equimolar systems the pentadentate ligand forms very stable, differently protonated mononuclear complexes with both metal ions. In the presence of iron(III) {NH, PhO(-), COO(-)}, {2NH, 2PhO(-), COO(-)} and {2NH, 2PhO(-), COO(-), OH(-)} coordinated complexes are dominant. The EPR titrations reflected the presence of microscopic complex formation pathways, leading to the formation of binding isomers in case of Cu(H(2)bhbdpa)(+), Cu(Hbhbdpa) and Cu(bhbdpa)(-). The {2NH, 2PhO(-)+COO(-)/H(2)O} coordinated Cu(bhbdpa) is the only species between pH 6-11. At twofold excess of metal ion dinuclear complexes were detected with both iron(III) and copper(II). In presence of iron(III) a mu-carboxylato-mu-hydroxo-bridged dinuclear complex (Fe(2)(bhbdpa)(OH)(3)) is formed from Fe(H(2)bhbdpa)(2+) through overlapping proton release processes, providing one of the rare examples for the stabilization of an endogenous carboxylate bridged diiron core in aqueous solution. The complex Cu(2)(bhbdpa)(+) detected in the presence of copper(II) is a paramagnetic (S=1) species with relatively weakly coupled metal ions.  相似文献   

13.
The co-ordination chemistry of some new oxamides towards Cu(II) ions was studied using various techniques: potentiometry, voltammetry, spectroscopy (UV-Vis, CD and EPR) and ESI-MS spectrometry. All tested compounds chelate the copper(II) ions with formation of 1:1 and 1:2 (metal-to-ligand ratio) complexes. The Cu(II) ions are bound by 1N, 2N or 3N nitrogen donor systems. Additionally, an unusual co-ordination to amide N-atoms without additional anchoring site is suggested. The (14)N hyperfine splitting observed for the system ox6-Cu(II) above pH 10 clearly indicates the involvement of at least three N donor atoms in the copper ion binding. Moreover, the surrounding by three amide-N and one carbonyl-O stabilizes the high oxidation state of copper(III), although such complexes are very unstable in solution.  相似文献   

14.
Mounting evidence has shown that dyshomeostasis of the redox-active biometals such as Cuand Fe can lead to oxidative stress,which plays a key role in the neuropathology of Alzheimer's disease(AD).Here we demonstrate that with the formation of Cu(Ⅱ)·Aβ1-40 complexes,copper markedly potentiatesthe neurotoxicity exhibited by β-amyloid peptide (Aβ).A greater amount of hydrogen peroxide was releasedwhen Cu(Ⅱ)·Aβ1-40 complexes was added to the xanthine oxidase/xanthine system detected by potassiumiodide spectrophotometry.Copper bound to Aβ1-40 was observed by electron paramagnetic resonance(EPR) spectroscopy.Circular dichroism (CD) studies indicated that copper chelation could cause a structuraltransition of Aβ.The addition of copper to Aβ introduced an increase on β-sheet as well as α-helix,whichmay be responsible for the aggregation of Aβ.We hypothesized that Aβ aggregation induced by copper maybe responsible for local injury in AD.The interaction between Cu~(2 ) and Aβ also provides a possible mechanismfor the enrichment of metal ions in amyloid plaques in the AD brain.  相似文献   

15.
Schiff bases derived from salicylaldehyde and 2-substituted aniline and their metal chelates with Cu(II), Ni(II), and Co(II) ions were synthesized and screened for the antiinflammatory and antiulcer activity. The compound salicylidene anthranilic acid (SAA) was found to possess the antiinflammatory and antiulcer activity. The copper complexes showed an increased antiulcer activity. The SAA is perhaps acting by influencing prostaglandin biosynthesis.  相似文献   

16.
The conformational and binding properties towards Cu(II) and Ni(II) ions of Gly-Gly-His derivatives of poly(l-lysine) have been investigated mainly using circular dichroism (c.d.) spectroscopy. These derivatized polymers can be considered macromolecular analogues of the Cu(II) and Ni(II) binding site of human serum albumin. It has been shown that modification up to 53% of the ε-amino groups of lysine side chains by covalent binding of the tripeptide unit Gly-Gly-His does not induce appreciable alteration of the α-helix forming tendency of the polylysine backbone. The derivatized polymers exhibit strong affinity towards Cu(II) and Ni(II) ions. At neutral pH, complexes are formed in which each tripeptide chelating unit is linked to one metal ion. The spectral characteristics in the visible absorption region are consistent with a square planar geometry of the complexes, with deprotonated peptide groups and one imidazole nitrogen in the coordination sphere of the ion. C.d. measurements in the far u.v. indicate that complex formation in the side chains causes an increase of ordered structure of the peptide backbone at neutral pH. This fact is interpreted in terms of a reduced electrostatic repulsion among side chains due to charge neutralization in the tripeptide units linked to metal ions.  相似文献   

17.
Selective recognition of metal ions utilizing metal ion-imprinted polymers (MIIPs) received much importance in diverse fields owing to their high selectivity for the target metal ions. In the present study, a copper ion imprinted polymer was synthesized without an additional complexing ligand or complex with a broad aim to avoid the conventional extra metal ion complexing ligand during the synthesis of MIIP. The complete removal of the copper metal ion from the MIIP was confirmed by AAS and SEM–EDX. SEM image of the MIIP exhibited nano-patterns and it was also found to be entirely different from that of non-imprinted polymer and polymer with copper metal ions. BET surface area analysis revealed more surface area (47.96 m2/g) for the Cu(II)-MIIP than non-imprinted control polymer (41.43 m2/g). TGA result of polymer with copper metal ion indicated more char yield (18.41%) when compared to non-imprinted control polymer (8.3%) and Cu(II)-MIIP (less than 1%). FTIR study confirmed the complexation between Cu(II)-MIIP and Cu(II) metal ion through carbonyl oxygen of acryl amide. The Cu(II)-MIIP exhibited an imprinting efficiency of 2.0 and it was showing 8% interference from a mixture of Zn, Ni and Co ions. A potentiometric ion selective electrode devised with Cu(II)-MIIP showed more potential response for Cu(II) ion than that was fabricated from non-imprinted polymer.  相似文献   

18.
A new series of antibacterial and antifungal triazine-derived mono- and di-substituted (symmetrical and unsymmetrical) Schiff-bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments and IR and electronic spectral measurements. IR spectra indicated the ligands to act as tridentate towards divalent metal ions via a trazine-N, the azomethine-N and, indole-NH and deprotonated-O of salicylaldehyde. The magnetic moments and electronic spectral data suggest octahedral geometry for the Co(II), Ni(II) and Zn(II)complexes and square-pyramid for Cu(II) complexes. NMR spectral data of the ligands and their diamagnetic zinc(II) complexes well-define their proposed structures/geometries. Elemental analyses data of the ligands and metal complexes agree with their proposed structures/geometries. The synthesized ligands, along with their metal complexes were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/ antifungal against two or more species as compared to the uncomplexed Schiff-base ligands.  相似文献   

19.
1. Human lactoferrin and transferrin are capable of binding two iron or copper ions into specific binding sites in the presence of bicarbonate. 2. Urea and several alkyl ureas have been effective in unfolding these metal-protein complexes. 3.Biphasic transitions are observed for the unfolding of each of the metal complexes of these proteins as determined by direct visible spectroscopy suggesting the release of iron(III) and Cu(II) ions from both of these metal-binding proteins during the unfolding process. 4. Greater stabilization and increased resistance to protein unfolding is observed for all iron(III) complexes compared to Cu(II) complexes of lactoferrin and transferrin as determined by isothermal unfolding and thermal denaturation. 5. Relative stabilization of the different metal-protein complexes investigated within this study were determined to be as follows: Lf-Fe(III) greater than Lf-Cu(II); Tf-Fe(III) greater than Tf-Cu(II), and Lf-Fe(III) greater than Tf-Fe(III); Lf-Cu(II) greater than Tf-Cu(II).  相似文献   

20.
Alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid (DHLA), have been suggested to chelate transition metal ions and, hence, mitigate iron- and copper-mediated oxidative stress in biological systems. However, it remains unclear whether LA and DHLA chelate transition metal ions in a redox-inactive form, and whether they remove metal ions from the active site of enzymes. Therefore, we investigated the effects of LA and DHLA on iron- or copper-catalyzed oxidation of ascorbate, a sensitive assay for the redox activity of these metal ions. We found that DHLA, but not LA, significantly inhibited ascorbate oxidation mediated by Fe(III)-citrate, suggesting that reduced thiols are required for iron binding. DHLA also strongly inhibited Cu(II)(histidine)(2)-mediated ascorbate oxidation in a concentration-dependent manner, with complete inhibition at a DHLA:Cu(II) molar ratio of 3:1. In contrast, no inhibition of copper-catalyzed ascorbate oxidation was observed with LA. To investigate whether LA and DHLA remove copper or iron from the active site of enzymes, Cu,Zn superoxide dismutase and the iron-containing enzyme aconitase were used. We found that neither LA nor DHLA, even at high, millimolar concentrations, altered the activity of these enzymes. Our results suggest that DHLA chelates and inactivates redox-active transition metal ions in small-molecular, biological complexes without affecting iron- or copper-dependent enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号