首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring human immunodeficiency virus (HIV-1) variants require the presence of CD4 and specific chemokine receptors to enter a cell. In the laboratory, HIV-1 variants that are capable of bypassing CD4 and utilizing only the CCR5 chemokine receptor for virus entry have been generated. Here we report that these CD4-independent viruses are significantly more sensitive to neutralization by soluble CD4 and a variety of antibodies. The same amino acid changes in the HIV-1 gp120 envelope glycoprotein determined CD4 independence and neutralization sensitivity. The CD4-independent envelope glycoproteins exhibited higher affinity for antibodies against CD4-induced gp120 epitopes but not other neutralizing ligands. The CD4-independent envelope glycoproteins did not exhibit increased lability relative to the wild-type envelope glycoproteins. The utilization of two receptors apparently allows HIV-1 to maintain a more neutralization-resistant state prior to engaging CD4 on the target cell, explaining the rarity of CD4 independence in wild-type HIV-1.  相似文献   

2.
Using recombinant and mutant viruses generated between two human immunodeficiency virus type 1 isolates that display differences in cell tropism and sensitivity to soluble CD4 neutralization, we show that these two properties of the virus are regulated by different mechanisms. Whereas there is an association between V3 loop conformation and a particular cellular tropism, soluble CD4 neutralization sensitivity appears to be determined by amino acid differences in the C2 domain of the envelope gp120 that modulate the stability of gp120-gp41 association. Our findings further illustrate the importance of functional interactions among different regions of the envelope gp120 in regulating the biological phenotypes of human immunodeficiency virus and suggest that additional probing of the V3 loop with monoclonal antibodies may identify specific structural features of this loop that determine cell tropism.  相似文献   

3.
A human monoclonal antibody designated 15e is reactive with the envelope glycoprotein (gp120) of multiple isolates of human immunodeficiency virus type 1 (HIV-1). Antibody 15e also neutralizes HIV-1 with broad specificity and blocks gp120 binding to CD4. Characterization of the 15e epitope shows that it is conformation dependent and is distinct from previously recognized functional domains of gp120, suggesting that this epitope represents a novel site important for HIV-1 neutralization and CD4 binding. These findings have implications for the development of a vaccine for AIDS.  相似文献   

4.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

5.
We previously showed that the envelope glycoprotein from an in vitro microglia-adapted human immunodeficiency virus type 1 isolate (HIV-1(Bori-15)) is able to use lower levels of CD4 for infection and demonstrates greater exposure of the CD4-induced epitope recognized by the 17b monoclonal antibody than the envelope of its parental, peripheral isolate (HIV-1(Bori)). We investigated whether these phenotypic changes were related to a different interaction of their soluble monomeric gp120 proteins with CD4 or 17b. Equilibrium binding analyses showed no difference between Bori and Bori-15 gp120s. However, kinetic analysis of surface plasmon resonance-based, real-time binding experiments showed that while both proteins have similar association rates, Bori-15 gp120 has a statistically significant, 3-fold-lower dissociation rate from immobilized CD4 than Bori and a statistically significant, 14-fold-lower dissociation rate from 17b than Bori in the absence of soluble CD4. In addition, using the sensitivity to inhibition by anti-CD4 antibodies as a surrogate for CD4:trimeric envelope interaction, we found that Bori-15 envelope-pseudotyped viruses were significantly less sensitive than Bori pseudotypes, with four- to sixfold-higher 50% inhibitory concentration values for the three anti-CD4 antibodies tested. These differences, though small, suggest that adaptation to microglia correlates with the generation of a gp120 that forms a more stable interaction with CD4. Nonetheless, the observation of limited binding changes leaves open the possibility that HIV-1 adaptation to microglia and HIV-associated dementia may be related not only to diminished CD4 dependence but also to changes in other molecular factors involved in the infection process.  相似文献   

6.
To investigate the basis for envelope (Env) determinants influencing simian immunodeficiency virus (SIV) tropism, we studied a number of Envs that are closely related to that of SIVmac239, a pathogenic, T-tropic virus that is neutralization resistant. The Envs from macrophage-tropic (M-tropic) virus strains SIVmac316, 1A11, 17E-Fr, and 1100 facilitated infection of CCR5-positive, CD4-negative cells. In contrast, the SIVmac239 Env was strictly dependent upon the presence of CD4 for membrane fusion. We also found that the Envs from M-tropic virus strains, which are less pathogenic in vivo, were very sensitive to antibody-mediated neutralization. Antibodies to the V3-loop, as well as antibodies that block SIV gp120 binding to CCR5, efficiently neutralized CD4-independent, M-tropic Envs but not the 239 Env. However, triggering the 239 Env with soluble CD4, presumably resulting in exposure of the CCR5 binding site, made it as neutralization sensitive as the M-tropic Envs. In addition, mutations of N-linked glycosylation sites in the V1/V2 region, previously shown to enhance antigenicity and immunogenicity, made the 239 Env partially CD4 independent. These findings indicate that Env-based determinants of M tropism of these strains are generally associated with decreased dependence on CD4 for entry into cells. Furthermore, CD4 independence and M tropism are also associated with neutralization sensitivity and reduced pathogenicity, suggesting that the humoral immune response may exert strong selective pressure against CD4-independent M-tropic SIVmac strains. Finally, genetic modification of viral Envs to enhance CD4 independence may also result in improved humoral immune responses.  相似文献   

7.
The effect of vpu on the release of human immunodeficiency type 1 capsid proteins was examined in the presence or absence of virus-encoded envelope glycoproteins as well as in cells which constitutively express either the CD4 or CD8 protein. The results show that vpu-mediated facilitated export of capsid proteins from HeLa cells does not require expression of the envelope glycoprotein. The experiments also show that export of virus capsid proteins from HeLa cells facilitated by vpu is not affected by coexpression of either the CD4 or CD8 protein. The vpu protein acts in trans to facilitate export of virus capsid proteins from HeLa cells.  相似文献   

8.
The noncovalent association of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) is disrupted by soluble CD4 binding, resulting in shedding of the gp120 exterior envelope glycoprotein. This observation has led to the speculation that interaction of gp120 with the CD4 receptor triggers shedding of the exterior envelope glycoprotein, allowing exposure of gp41 domains necessary for membrane fusion steps involved in virus entry or syncytium formation. To test this hypothesis, a set of HIV-1 envelope glycoprotein mutants were used to examine the relationship of soluble CD4-induced shedding of the gp120 glycoprotein to envelope glycoprotein function in syncytium formation and virus entry. All mutants with a threefold or greater reduction in CD4-binding ability exhibited marked decreases in gp120 shedding in response to soluble CD4, even though several of these mutants exhibited significant levels of envelope glycoprotein function. Conversely, most fusion-defective mutants with wild-type gp120-CD4 binding affinity, including those with changes in the V3 loop, efficiently shed gp120 following soluble CD4 binding. Thus, soluble CD4-induced shedding of gp120 is not a generally useful marker for conformational changes in the HIV-1 envelope glycoproteins necessary for the virus entry or syncytium formation processes. Some gp120 mutants, despite being expressed on the cell surface and capable of efficiently binding soluble CD4, exhibited decreased gp120 shedding. These mutants were still sensitive to neutralization by soluble CD4, indicating that, for envelope glycoproteins exhibiting high affinity for soluble CD4, competitive inhibition may be more important than gp120 shedding for the antiviral effect.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) infects and induces syncytium formation in microglial cells from the central nervous system (CNS). A primary isolate (HIV-1(BORI)) was sequentially passaged in cultured microglia, and the isolate recovered (HIV-1(BORI-15)) showed high levels of fusion and replicated more efficiently in microglia (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. González-Scarano, J. Virol. 70:7654-7662, 1996). The parent and adapted viruses used CCR5 as coreceptor. Recombinant viruses demonstrated that the syncytium-inducing phenotype was associated with four amino acid differences in the V1/V2 region of the viral gp120 (J. T. C. Shieh, J. Martin, G. Baltuch, M. H. Malim, and F. González-Scarano, J. Virol. 74:693-701, 2000). We produced luciferase-reporter, env-pseudotyped viruses using plasmids containing env sequences from HIV-1(BORI), HIV-1(BORI-15), and the V1/V2 region of HIV-1(BORI-15) in the context of HIV-1(BORI) env (named rBORI, rB15, and rV1V2, respectively). The pseudotypes were used to infect cells expressing various amounts of CD4 and CCR5 on the surface. In contrast to the parent recombinant, the rB15 and rV1V2 pseudotypes retained their infectability in cells expressing low levels of CD4 independent of the levels of CCR5, and they infected cells expressing CD4 with a chimeric coreceptor containing the third extracellular loop of CCR2b in the context of CCR5 or a CCR5 Delta4 amino-terminal deletion mutant. The VH-rB15 and VH-rV1V2 recombinant viruses were more sensitive to neutralization by a panel of HIV-positive sera than was VH-rBORI. Interestingly, the CD4-induced 17b epitope on gp120 was more accessible in the rB15 and rV1V2 pseudotypes than in rBORI, even before CD4 binding, and concomitantly, the rB15 and rV1V2 pseudotypes were more sensitive to neutralization with the human 17b monoclonal antibody. Adaptation to growth in microglia--cells that have reduced expression of CD4 in comparison with other cell types--appears to be associated with changes in gp120 that modify its ability to utilize CD4 and CCR5. Changes in the availability of the 17b epitope indicate that these affect conformation. These results imply that the process of adaptation to certain tissue types such as the CNS directly affects the interaction of HIV-1 envelope glycoproteins with cell surface components and with humoral immune responses.  相似文献   

10.
N Sullivan  Y Sun  J Li  W Hofmann    J Sodroski 《Journal of virology》1995,69(7):4413-4422
The structure, replicative properties, and sensitivity to neutralization by soluble CD4 and monoclonal antibodies were examined for molecularly cloned envelope glycoproteins derived from human immunodeficiency virus type 1 (HIV-1) viruses either isolated directly from patients or passaged in T-cell lines. Complementation of virus entry into peripheral blood mononuclear cell targets by primary patient envelope glycoproteins exhibited efficiencies ranging from that observed for the HXBc2 envelope glycoproteins, which are derived from a T-cell line-passaged virus, to approximately fivefold-lower values. The ability of the envelope glycoproteins to complement virus entry roughly correlated with sensitivity to neutralization by soluble CD4. Laboratory-adapted viruses were sensitive to neutralization by monoclonal antibodies directed against the CD4-binding site and the third variable (V3) loop of the gp120 glycoprotein. By comparison, viruses with envelope glycoproteins from primary patient isolates exhibited decreased sensitivity to neutralization by these monoclonal antibodies; for these viruses, neutralization sensitivity correlated with replicative ability. Subinhibitory concentrations of soluble CD4 and a CD4-binding site-directed antibody significantly enhanced the entry of viruses containing envelope glycoproteins from some primary patient isolates. The sensitivity of viruses containing the different envelope glycoproteins to neutralization by soluble CD4 or monoclonal antibodies could be predicted by assays dependent on the binding of the inhibitory molecule to the oligomeric envelope glycoprotein complex but less well by assays measuring binding to the monomeric gp120 glycoprotein. These results indicate that the intrinsic structure of the oligomeric envelope glycoprotein complex of primary HIV-1 isolates, while often less than optimal with respect to the mediation of early events in virus replication, allows a relative degree of resistance to neutralizing antibodies. The interplay of selective forces for higher virus replication efficiency and resistance to neutralizing antibodies could explain the temporal course described for the in vivo emergence of HIV-1 isolates with differing phenotypes.  相似文献   

11.
A truncating E767stop mutation was introduced into the envelope glycoprotein of simian immunodeficiency virus (SIV) strain SIV239-M5 (moderately sensitive to antibody-mediated neutralization and lacking five sites for N-linked carbohydrate attachment) and strain SIV316 (very sensitive to neutralization, with eight amino acid changes from the neutralization-resistant parental molecular clone, SIV239). The truncating mutation increased Env content in virions, increased infectivity, and decreased sensitivity to antibody-mediated neutralization in both strains. However, the magnitude of the effect on infectivity and neutralization sensitivity differed considerably between the two strains. In the context of strain SIV239-M5, truncation increased Env content in virions approximately 10-fold and infectivity in a reporter cell assay 24-fold. The truncated SIV239-M5 was only slightly more resistant to neutralization by polyclonal monkey sera and by monoclonal antibodies than SIV239-M5 with a full-length envelope glycoprotein. In the context of strain SIV316, truncation increased infectivity a dramatic 480-fold, while envelope content in virions was increased only about 14-fold. This dramatic increase in infectivity cannot be simply explained by the increase in envelope content and is likely due to an increase in inherent infectivity, i.e., infectivity per spike, that results from truncation. The truncated SIV316 was extremely resistant to antibody-mediated neutralization. In fact, it was not neutralized by any of the antibodies tested. When increasing amounts of SIV316 envelope glycoprotein (full length) were provided in trans to SIV316, infectivity was increased and sensitivity to neutralization was decreased, but to nowhere near the degree that was obtained when truncated SIV316 envelope glycoprotein was used. Truncated forms of SIV239 and SIV239-M5 required higher levels of soluble CD4 for inhibition of infection than their nontruncated forms; truncated SIV316 did not. Our results suggest that envelope content in SIV virions, infectivity, and resistance to antibody-mediated neutralization can be increased not only by truncation of the cytoplasmic domain but also by provision of excess envelope in trans. The striking increase in infectivity that results from truncation in the context of SIV316 appears to be due principally to an increase in inherent infectivity per spike.  相似文献   

12.
The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on coreceptor usage phenotype. These results provide the first evidence of a correlation between HIV-1 biological phenotype and neutralization sensitivity, raising the possibility that the in vivo evolution of HIV-1 coreceptor usage may be influenced by the selective pressure of specific host antibodies.  相似文献   

13.
14.
To explore the role of the CD4 molecule in human immunodeficiency virus (HIV) infection following initial virus-CD4 binding, we have characterized CD4-specific antibodies raised by immunizing an HIV-1-infected human with human recombinant soluble CD4 (rsCD4). Fabs were selected from a human recombinant Fab library constructed from the bone marrow of this immunized individual. Here, we describe a human rsCD4-specific recombinant Fab clone selected by panning the library over complexes of human rsCD4 and recombinant HIV-1 envelope protein. While this Fab does not bind to CD4-positive T-cell lines or to human T lymphocytes, it recognizes cell surface-expressed CD4 following the incubation of these cells with a recombinant form of HIV-1 gp120 or with HIV-1 virions. The Fab is not HIV-1 envelope specific, since it does not bind to recombinant gp120 or to native cell surface-expressed HIV-1 envelope proteins. As confirmation of its CD4 specificity, we show that this Fab immunoprecipitates a 55-kDa protein, corresponding to the molecular mass of cellular CD4, from an H9 cell lysate. The specificity of this human Fab provides evidence for a virus-induced conformational change in cell surface-expressed on CD4. The characterization of this altered CD4 conformation and its effects on the host cell will be important in defining postbinding events in HIV infection.  相似文献   

15.
Enfuvirtide (ENF/T-20/Fuzeon), the first human immunodeficiency virus (HIV) entry inhibitor to be licensed, targets a structural intermediate of the entry process. ENF binds the HR1 domain in gp41 after Env has bound CD4, preventing conformational changes needed for membrane fusion. Mutations in HR1 that confer ENF resistance can arise following ENF therapy. ENF resistance mutations were introduced into an R5- and X4-tropic Env to examine their impact on fusion, infection, and sensitivity to different classes of entry inhibitors and neutralizing antibodies. HR1 mutations could reduce infection and fusion efficiency and also delay fusion kinetics, likely accounting for their negative impact on viral fitness. HR1 mutations had minimal effect on virus sensitivity to other classes of entry inhibitors, including those targeting CD4 binding (BMS-806 and a CD4-specific monoclonal antibody [MAb]), coreceptor binding (CXCR4 inhibitor AMD3100 and CCR5 inhibitor TAK-779), or fusion (T-1249), indicating that ENF-resistant viruses can remain sensitive to other entry inhibitors in vivo. Some HR1 mutations conferred increased sensitivity to a subset of neutralizing MAbs that likely target fusion intermediates or with epitopes preferentially exposed following receptor interactions (17b, 48D, 2F5, 4E10, and IgGb12), as well as sera from some HIV-positive individuals. Mechanistically, enhanced neutralization correlated with reduced fusion kinetics, indicating that, in addition to steric constraints, kinetics may also limit virus neutralization by some antibodies. Therefore, escape from ENF comes at a cost to viral fitness and may confer enhanced sensitivity to humoral immunity due to prolonged exposure of epitopes that are not readily accessible in the native Env trimer. Resistance to other entry inhibitors was not observed.  相似文献   

16.
Mutant gp120 glycoproteins exhibiting a range of affinities for CD4 were tested for ability to form syncytia and to complement an env-defective provirus for replication. Surprisingly, gp120 mutants that efficiently induced syncytia and/or complemented virus replication were identified that exhibited marked (up to 50-fold) reductions in CD4-binding ability. Temperature-dependent changes in gp120, which result in a seven- to ninefold increase in affinity for CD4, were shown not to be necessary for subsequent membrane fusion or virus entry events. Mutant glycoproteins demonstrating even relatively small decreases in CD4-binding ability exhibited reduced sensitivity to soluble CD4. The considerable range of CD4-binding affinities tolerated by replication-competent HIV-1 variants has important implications for antiviral strategies directed at the gp120-CD4 interaction.  相似文献   

17.
The humoral immune response to human immunodeficiency virus type 1 (HIV-1) is often studied by using monomeric or denatured envelope proteins (Env). However, native HIV-1 Env complexes that maintain quaternary structure elicit immune responses that are qualitatively distinct from those seen with monomeric or denatured Env. To more accurately assess the levels and types of antibodies elicited by HIV-1 infection, we developed an antigen capture enzyme-linked immunosorbent assay using a soluble, oligomeric form of HIV-1IIIB Env (gp140) that contains gp120 and the gp41 ectodomain. The gp140, captured by various monoclonal antibodies (MAbs), retained its native oligomeric structure: it bound CD4 and was recognized by MAbs to conformational epitopes in gp120 and gp41, including oligomer-specific epitopes in gp41. We compared the reactivities of clade B and clade E serum samples to captured Env preparations and found that while both reacted equally well with oligomeric gp140, clade B seras reacted more strongly with monomeric gp120 than did clade E samples. However, these differences were minimized when gp120 was captured by a V3 loop MAb, which may lead to increased exposure of the CD4 binding site. We also measured the ability of serum samples to block binding of MAbs to epitopes in gp120 and gp41. Clade B serum samples consistently blocked binding of oligomer-dependent MAbs to gp41 and, to a slightly lesser extent, MAbs to the CD4 binding site in gp120. Clade E serum samples showed equivalent or greater blocking of oligomer-dependent gp41 antibodies and considerably less blocking of CD4-binding-site MAbs. Finally, we found that < 5% of the antibodies in clade B sera bound to epitopes present only in monomeric gp120, 30% bound to epitopes present in both monomeric gp120 and oligomeric gp140, and 70% bound to epitopes present in oligomeric gp140, which includes gp41. Thus, captured oligomeric Env closely reflects the antigenic characteristics of Env protein on the surface of virions and infected cells, retains highly conserved epitopes that are recognized by antibodies raised against different clades, and makes it possible to detect a much greater fraction of total anti-HIV-1 Env activity in sera than does native monomeric gp120.  相似文献   

18.
The high-affinity interaction between the envelope glycoprotein (gp120-gp41) of the human immunodeficiency virus type 1 and its receptor, CD4, is important for viral entry into cells and therapeutical approaches based on the soluble form of CD4 (sCD4). Using flow cytometry, we studied the kinetics of binding of sCD4 to gp120-gp41 expressed on the cell surface. sCD4 binding was dependent on sCD4 concentration and temperature and exhibited bimolecular reaction kinetics. Binding was very slow at low sCD4 concentrations (below 0.2 micrograms/ml) and low temperatures (below 13 degrees C) but increased sharply with increasing temperature. The rate constant for association at 37 degrees C (1.5 x 10(5) M-1 s-1) was 14-fold higher than at 4 degrees C, but the affinity of sCD4 to membrane-bound gp120-gp41 was not significantly affected. The activation energy at higher temperatures (28 to 37 degrees C) was less than at lower temperatures (4 to 13 degrees C). After long periods of incubation, we observed a decrease of surface-bound sCD4 and gp120, even at low temperatures, which was attributed to sCD4-induced shedding of gp120. The rate of gp120 shedding was much lower than the rate of sCD4 binding and was dependent on sCD4 concentration and temperature. The finding that sCD4 binding is slow, especially at low sCD4 concentrations, can be of critical importance for efficient blocking of viral infection by sCD4 and should be considered when designing new protocols in the therapy of AIDS patients.  相似文献   

19.
20.
Although infection by human immunodeficiency virus (HIV) typically requires an interaction between the viral envelope glycoprotein (Env), CD4, and a chemokine receptor, CD4-independent isolates of HIV and simian immunodeficiency virus have been described. The structural basis and underlying mechanisms for this phenotype are unknown. We have derived a variant of HIV-1/IIIB, termed IIIBx, that acquired the ability to utilize CXCR4 without CD4. This virus infected CD4-negative T and B cells and fused with murine 3T3 cells that expressed human CXCR4 alone. A functional IIIBx env clone exhibited several mutations compared to the CD4-dependent HXBc2 env, including the striking loss of five glycosylation sites. By constructing env chimeras with HXBc2, the determinants for CD4 independence were shown to map outside the V1/V2 and V3 hypervariable loops, which determine chemokine receptor specificity, and at least partly within an area on the gp120 core that has been implicated in forming a conserved chemokine receptor binding site. We also identified a point mutation in the C4 domain that could render the IIIBx env clone completely CD4 dependent. Mutations in the transmembrane protein (TM) were also required for CD4 independence. Remarkably, when the V3 loop of a CCR5-tropic Env was substituted for the IIIBx Env, the resulting chimera was found to utilize CCR5 but remained CD4 independent. These findings show that Env determinants for chemokine receptor specificity are distinct from those that mediate CD4-independent use of that receptor for cell fusion and provide functional evidence for multiple steps in the interaction of Env with chemokine receptors. Combined with our observation that the conserved chemokine receptor binding site on gp120 is more exposed on the IIIBx gp120 (T. L. Hoffman, C. C. LaBranche, W. Zhang, G. Canziani, J. Robinson, I. Chaiken, J. A. Hoxie, and R. W. Doms, Proc. Natl. Acad. Sci. USA 96:6359-6364, 1999), the findings from this study suggest novel approaches to derive and design Envs with exposed chemokine receptor binding sites for vaccine purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号