首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cobra CTX A3, the major cardiotoxin (CTX) from Naja atra, is a cytotoxic, basic β-sheet polypeptide that is known to induce a transient membrane leakage of cardiomyocytes through a sulfatide-dependent CTX membrane pore formation and internalization mechanism. The molecular specificity of CTX A3-sulfatide interaction at atomic levels has also been shown by both nuclear magnetic resonance (NMR) and X-ray diffraction techniques to reveal a role of CTX-induced sulfatide conformational changes for CTX A3 binding and dimer formation. In this study, we investigate the role of sulfatide lipid domains in CTX pore formation by various biophysical methods, including fluorescence imaging and atomic force microscopy, and suggest an important role of liquid-disordered (ld) and solid-ordered (so) phase boundary in lipid domains to facilitate the process. Fluorescence spectroscopic studies on the kinetics of membrane leakage and CTX oligomerization further reveal that, although most CTXs can oligomerize on membranes, only a small fraction of CTXs oligomerizations form leakage pores. We therefore suggest that CTX binding at the boundary between the so and so/ld phase coexistence sulfatide lipid domains could form effective pores to significantly enhance the CTX-induced membrane leakage of sulfatide-containing phosphatidylcholine vesicles. The model is consistent with our earlier observations that CTX may penetrate and lyse the bilayers into small aggregates at a lipid/protein molar ratio of about 20 in the ripple P(β)' phase of phosphatidylcholine bilayers and suggest a novel mechanism for the synergistic action of cobra secretary phospholipase A2 and CTXs.  相似文献   

2.
Cobra cardiotoxins, a family of basic polypeptides having lipid- and heparin-binding capacities similar to the cell-penetrating peptides, induce severe tissue necrosis and systolic heart arrest in snakebite victims. Whereas cardiotoxins are specifically retained on the cell surface via heparan sulfate-mediated processes, their lipid binding ability appears to be responsible, at least in part, for cardiotoxin-induced membrane leakage and cell death. Although the exact role of lipids involved in toxin-mediated cytotoxicity remains largely unknown, monoclonal anti-sulfatide antibody O4 has recently been shown to inhibit the action of CTX A3, the major cardiotoxin from Taiwan cobra venom, on cardiomyocytes by preventing cardiotoxin-induced membrane leakage and CTX A3 internalization into mitochondria. Here, we show that anti-sulfatide acts by blocking the binding of CTX A3 to the sulfatides in the plasma membrane to prevent sulfatide-dependent CTX A3 membrane pore formation and internalization. We also describe the crystal structure of a CTX A3-sulfatide complex in a membrane-like environment at 2.3 angstroms resolution. The unexpected orientation of the sulfatide fatty chains in the structure allows prediction of the mode of toxin insertion into the plasma membrane. CTX A3 recognizes both the headgroup and the ceramide interfacial region of sulfatide to induce a lipid conformational change that may play a key role in CTX A3 oligomerization and cellular internalization. This proposed lipid-mediated toxin translocation mechanism may also shed light on the cellular uptake mechanism of the amphiphilic cell-penetrating peptides known to involve multiple internalization pathways.  相似文献   

3.
Structural basis of membrane-induced cardiotoxin A3 oligomerization   总被引:6,自引:0,他引:6  
Cobra cardiotoxins (CTXs) have previously been shown to induce membrane fusion of vesicles formed by phospholipids such as cardiolipin or sphingomyelin. CTX can also form a pore in membrane bilayers containing a anionic lipid such as phosphatidylserine or phosphatidylglycerol. Herein, we show that the interaction of CTX with negatively charged lipids causes CTX dimerization, an important intermediate for the eventual oligomerization of CTX during the CTX-induced fusion and pore formation process. The structural basis of the lipid-induced oligomerization of CTX A3, a major CTX from Naja atra, is then illustrated by the crystal structure of CTX A3 in complex with SDS; SDS likely mimics anionic lipids of the membrane under micelle conditions at 1.9-A resolution. The crystal packing reveals distinct SDS-free and SDS-rich regions; in the latter two types of interconnecting CTX A3 dimers, D1 and D2, and several SDS molecules can be identified to stabilize D1 and D2 by simultaneously interacting with residues at each dimer interface. When the three CTXSDS complexes in the asymmetric unit are overlaid, the orientation of CTX A3 monomers relative to the SDS molecules in the crystal is strikingly similar to that of the toxin with respect to model membranes as determined by NMR and Fourier transform infrared methods. These results not only illustrate how lipid-induced CTX dimer formation may be transformed into oligomers either as inverted micelles of fusion intermediates or as membrane pore of anionic lipid bilayers but also underscore a potential role for SDS in x-ray diffraction study of protein-membrane interactions in the future.  相似文献   

4.
The accumulation of sulfatide (sulfatogalactosyl cerebroside) and changes in the sulfatide species present have been examined in the cerebellum of day 6-32 aged rats and in multiple sclerosis (MS) tissue samples. Negative ion electrospray mass spectrometry with daughter and parent ion analyses were used to distinguish the fatty acyl character in the amide linkage of sulfatide; measurement was done by selected ion and multiple reaction monitoring of individually identified sulfatide molecules. Sulfatide accumulation in rat cerebellum shows that 18:0- and hydroxylated 18:0-sulfatide are the first sulfatide molecules detectable. Very long fatty acyl chain sulfatide molecules (>20:0) are present at day 7 and the ratio of non-hydroxylated compared to hydroxylated sulfatide rises as the amount of non-hydroxylated sulfatide increases. 24:1-sulfatide accumulates at a ratio of about 3:1 over 24:0-sulfatide during active myelination. Analyses of the sulfatide in human tissue have shown differences between MS plaque tissues, normal appearing adjacent white matter and control tissues. The findings show that total sulfatide is reduced by 60% in the plaque matter and decreased 25% in adjacent normal appearing white matter. There are significant increases (P=0.05) in the amount of hydroxylation of sulfatide, demonstrated by an increase in the percentage of hydroxylated h24:0-sulfatide (hydroxy-lignoceroyl sulfatide).  相似文献   

5.
Tjong SC  Chen TS  Huang WN  Wu WG 《Biochemistry》2007,46(35):9941-9952
Cobra cardiotoxins (CTXs) are three-fingered polypeptides with positively charged domains that have been shown to bind to anionic ligands of snake venom citrate, glycosaminoglycans, sulfoglycosphingolipid, and nucleotide triphosphate with various biochemical effects including toxin dimerization, cell surface retention, membrane pore formation, cell internalization and blocking of enzymatic activities of kinase and ATPase. The reported anionic binding sites, however, are found to be different among different CTX homologues for potentially different CTX activities. Herein, by NMR studies of the binding of inorganic phosphate, dATP (stable form of ATP), and heparin-derived tetrasaccharide to Naja atra CTX A1, a novel CTX molecule exhibiting in vivo necrotic activity on skeletal muscle, we demonstrate that diverse ligands binding to CTXs could also occur at a single protein site with flexible side chain interactions. The flexibility of such an interaction is also illustrated by the available heparin-CTX A3 complex structures with different heparin chain lengths binding at the same site. Our results provide a likely structural explanation on how the interaction between heparan sufate and proteins depends more on the overall charge cluster organization rather than on their fine structures. We also suggest that the ligand binding site of CTX homologues can be fine-tuned by nonconserved residues near the binding pocket because of their flexible side chain interaction and dimerization ability, even for the rigid CTX molecules tightened by four disulfide bonds.  相似文献   

6.
Chen TS  Chung FY  Tjong SC  Goh KS  Huang WN  Chien KY  Wu PL  Lin HC  Chen CJ  Wu WG 《Biochemistry》2005,44(20):7414-7426
Natural homologues of cobra cardiotoxins (CTXs) were classified into two structural subclasses of group I and II based on the amino acid sequence and circular dichroism analysis, but the exact differences in their three-dimensional structures and biological significance remain elusive. We show by circular dichroism, NMR spectroscopic, and X-ray crystallographic analyses of a newly purified group I CTX A6 from eastern Taiwan cobra (Naja atra) venoms that its loop I conformation adopts a type VIa turn with a cis peptide bond located between two proline residues of PPxY. A similar "banana-twisted" conformation can be observed in other group I CTXs and also in cyclolinopeptide A and its analogues. By binding to the membrane environment, group I CTX undergoes a conformational change to adopt a more extended hydrophobic domain with beta-sheet twisting closer to the one adopted by group II CTX. This result resolves a discrepancy in the CTX structural difference reported previously between solution as well as crystal state and shows that, in addition to the hydrophobicity, the exact loop I conformation also plays an important role in CTX-membrane interaction. Potential protein targets of group I CTXs after cell internalization are also discussed on the basis of the determined loop I conformation.  相似文献   

7.
Huang WN  Sue SC  Wang DS  Wu PL  Wu WG 《Biochemistry》2003,42(24):7457-7466
Cobra cardiotoxin, a cytotoxic beta-sheet basic polypeptide, is known to cause membrane leakage in many cells including human erythrocytes. Herein, we demonstrate that the major cobra cardiotoxin from Naja atra, CTX A3, can cause leakage of vesicle contents in phosphatidylglycerol (PG) and phosphatidylserine containing, but not in pure phosphatidylcholine (PC), membrane bilayers. By the combined polarized attenuated total reflection infrared spectroscopy and computer simulation studies, CTX A3 is shown to peripherally bind to both zwitterionic and anionic monolayers in a similar edgewise manner with a tilted angle of approximately 48 +/- 20 degrees between the beta-sheet plane of the CTX molecule and the normal of the membrane surface. The average surface area expansion induced by CTX A3 binding to the PG monolayer, however, is two times larger than that of the PC monolayer as determined by the Langmuir minitrough method. Interaction energy considerations of CTX A3 on neutral and negatively charged membrane surfaces suggests that the electrostatic interaction between anionic lipid and cationic CTXs plays a role in modulating the penetration depth of CTX molecules on the initial peripheral binding mode and reveals a pathway leading to the formation of an inserted mode in negatively charged membrane bilayers.  相似文献   

8.
S C Sue  H C Jarrell  J R Brisson  W G Wu 《Biochemistry》2001,40(43):12782-12794
Recent studies of cobra P-type cardiotoxins (CTXs) have shown that the water-binding loop (loop II) plays a crucial role in toxin binding to biological membranes and in their cytotoxicity. To understand the role of bound water in the loop, the structure and dynamics of the major P-type CTX from Taiwan cobra, CTX A3, were determined by a comprehensive NMR analysis involving (1)H NOESY/ROESY, (13)C[1)H]NOE/T(1) relaxation, and (17)O triple-quantum filtered NMR. A single water molecule was found to be tightly hydrogen bonded to the NH of Met26 with a correlation time (5-7 ns) approaching the isotropic tumbling time (3.8-4.5 ns) of the CTX A3 molecule. Surprisingly, despite the relatively long residence time (ca. 5 ns to 100 micros), the bound water molecule of CTX A3 is located within a dynamic (order parameter S(2) approximately 0.7) and solvent accessible loop. Comparison among several P-type CTXs suggests that proline residues in the consensus sequence of MxAxPxVPV should play an important role in the formation of the water binding loop. It is proposed that the exchange rate of the bound water may play a role in regulating the lipid binding mode of amphiphilic CTX molecules near membrane surfaces.  相似文献   

9.
We studied the formation of early endosomes in differentiating oligodendrocytes and type-2 astrocytes, which are derived from common precursor cells in rat neonates, using fluorescent analogues of lactosylceramide (LacCer) and sulfatide labeled with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene++ +-3-pentanoic acid (BODIPY FL C5). These sphingolipid analogues exhibit a concentration-dependent shift in their fluorescence emission maximum from green to red wavelengths that can be used to estimate the relative concentration of an analogue in the intracellular membranes of living cells by quantitative fluorescence microscopy. When oligodendrocytes at various stages of differentiation were incubated with 1 microM BODIPY-sphingolipid at 10 degrees C and washed, yellow/green plasma membrane fluorescence was observed. Quantitative studies confirmed that the amount of BODIPY-LacCer or -sulfatide incorporated into the plasma membrane of a given cell type was identical. When these cells were subsequently warmed to 37 degrees C for 2-10 min to allow internalization to occur, the BODIPY-sphingolipid analogues were distributed in a punctate pattern throughout the cytoplasm. Within individual cells labeled with BODIPY-sulfatide, some endosomes exhibited green fluorescence, whereas others emitted red/orange fluorescence. In contrast, when BODIPY-LacCer was used, only green endosomes were observed. Although this phenomenon could be observed at earlier stages of differentiation, it was most obvious in mature oligodendrocytes, where quantitative measurements of the red/green ratio of individual endosomes suggested about a threefold difference between the concentration of the LacCer and sulfatide analogues in endosomes. These results suggest that "lipid sorting" takes place during endocytosis in mature oligodendrocytes, resulting in selective exclusion of certain lipid species during the internalization process. This sorting event may result in the net addition of lipids to the differentiated oligodendrocyte plasma membrane.  相似文献   

10.
We have determined the average location and dynamic reorientation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) attached to a C12 sn-2 chain of a phosphatidylserine (PS) analogue (C12-NBD-PS) in zwitterionic phosphatidylcholine (PC) and negatively charged phosphatidylserine (PS) host membranes. (1)H magic angle spinning nuclear Overhauser enhancement spectroscopy indicates a highly dynamic reorientation of the aromatic molecule in the membrane. The average location of NBD is characterized by a broad distribution function along the membrane director with a maximum indicating the location of the probe in the lipid/water interface of the lipid membrane. This behavior can be explained by a backfolding of the sn-2 chain towards the aqueous phase. Small differences in the distribution profiles of the NBD group along the membrane normal between PC and PS host membranes were found: in a PC host membrane, the NBD distribution has its maximum in the glycerol region; in a PS host membrane, NBD resides mostly in the upper chain region. These differences may be accounted for by packing differences in the PC versus PS host membranes. As seen by (2)H NMR order parameters, PS bilayers show a much higher packing density compared to PC membranes. Consequently, backfolding of the sn-2 chain with the NBD group attached causes a larger decrease of molecular order of the sn-1 chain in PS than in PC membranes. The broad distributions obtained for lipid chain attached NBD molecules reflect the motional freedom and molecular disorder in the liquid-crystalline lipid membrane.  相似文献   

11.
Bax is a pro-apoptotic Bcl-2 family protein. The activated Bax translocates to mitochondria, where it forms pore and permeabilizes the mitochondrial outer membrane. This process requires the BH3-only activator protein (i.e. tBid) and can be inhibited by anti-apoptotic Bcl-2 family proteins such as Bcl-xL. Here by using single molecule fluorescence techniques, we studied the integration and oligomerization of Bax in lipid bilayers. Our study revealed that Bax can bind to lipid membrane spontaneously in the absence of tBid. The Bax pore formation undergoes at least two steps: pre-pore formation and membrane insertion. The activated Bax triggered by tBid or BH3 domain peptide integrates on bilayers and tends to form tetramers, which are termed as pre-pore. Subsequent insertion of the pre-pore into membrane is highly dependent on the composition of cardiolipin in lipid bilayers. Bcl-xL can translocate Bax from membrane to solution and inhibit the pore formation. The study of Bax integration and oligomerization at the single molecule level provides new evidences that may help elucidate the pore formation of Bax and its regulatory mechanism in apoptosis.  相似文献   

12.
Severe tissue necrosis with a retarded wound healing process is a major symptom of a cobra snakebite. Cardiotoxins (CTXs) are major components of cobra venoms that belong to the Ly-6 protein family and are implicated in tissue damage. The interaction of the major CTX from Taiwan cobra, i.e. CTX A3, with sulfatides in the cell membrane has recently been shown to induce pore formation and cell internalization and to be responsible for cytotoxicity in cardiomyocytes (Wang, C.-H., Liu, J.-H., Lee, S.-C., Hsiao, C.-D., and Wu, W.-g. (2006) J. Biol. Chem. 281, 656-667). We show here that one of the non-cytotoxic CTXs, i.e. CTX A5 or cardiotoxin-like basic polypeptide, from Taiwan cobra specifically bound to alpha(v)beta3 integrin and inhibited bone resorption activity. We found that both membrane-bound and recombinant soluble alpha(v)beta3 integrins bound specifically to CTX A5 in a dose-dependent manner. Surface plasmon resonance analysis showed that human soluble alpha(v)beta3 bound to CTX A5 with an apparent affinity of approximately 0.3 microM. Calf pulmonary artery endothelial cells, which constitutively express alpha(v)beta3, showed a CTX A5 binding profile similar to that of membrane-bound and soluble alpha(v)beta3 integrins, suggesting that endothelial cells are a potential target for CTX action. We tested whether CTX A5 inhibits osteoclast differentiation and bone resorption, a process known to be involved in alpha(v)beta3 binding and inhibited by RGD-containing peptides. We demonstrate that CTX A5 inhibited both activities at a micromolar range by binding to murine alpha(v)beta3 integrin in osteoclasts and that CTX A5 co-localized with beta3 integrin. Finally, after comparing the integrin binding affinity among CTX homologs, we propose that the amino acid residues near the two loops of CTX A5 are involved in integrin binding. These results identify CTX A5 as a non-RGD integrin-binding protein with therapeutic potential as an integrin antagonist.  相似文献   

13.
The lysosomal removal of the sulfate moiety from sulfatide requires the action of two proteins, arylsulfatase A and sphingolipid activator protein-1 (SAP-1). Recently, patients have been identified who have a variant form of metachromatic leukodystrophy which is characterized by mutations in the gene coding for SAP-1, which is also called "prosaposin." All of the mutations characterized in these patients result in (a) deficient mature SAP-1, as determined by immunoblotting after SDS-PAGE of tissue and cell extracts, and (b) decreased ability of cultured skin fibroblasts to metabolize endocytosed [14C]-sulfatide. We now report the insertion of the full-length prosaposin cDNA into the Moloney murine leukemia virus-derived retroviral vector, pLJ, and the infection of cultured skin fibroblasts from a newly diagnosed and molecularly characterized patient with SAP-1 deficiency. The cultured cells infected with the prosaposin cDNA construct now show both production of normal levels of mature SAP-1 and completely normal metabolism of endocytosed [14C]-sulfatide. These studies demonstrate that the virally transferred prosaposin cDNA is processed normally and is localized within lysosomes, where it is needed for interaction between sulfatide and arylsulfatase A. In addition, normal as well as mutant sequences can now be found by allele-specific oligonucleotide hybridization of PCR-amplified genomic DNA by using exonic sequences as primers.  相似文献   

14.
Current methods for screening cell receptor internalization often require complex image analysis with limited sensitivity. Here we describe a novel bioassay based on detection of changes in global fluorescence lifetime above a gold substrate, with superresolution axial sensitivity and no need for image analysis. We show that the lifetime of enhanced green fluorescent protein expressed in a cellular membrane is greatly reduced in close proximity to the gold, resulting in a distance-dependent lifetime distribution throughout the cell. We demonstrate the application of this phenomenon in a screening assay by comparing the efficacies of two small molecule inhibitors interfering with the internalization process of a G protein-coupled receptor.  相似文献   

15.
Sue SC  Brisson JR  Chang SC  Huang WN  Lee SC  Jarrell HC  Wu W 《Biochemistry》2001,40(35):10436-10446
Glycosaminoglycans (GAGs) have been suggested to be a potential target for cobra cardiotoxin (CTX) with high affinity and specificity via a cationic belt at the concave surface of the polypeptide. The interaction of GAGs, such as high-molecular weight heparin, with CTXs not only can induce aggregation of CTX molecules but also can enhance their penetration into membranes. The binding of short chain heparin, such as a heparin-derived disaccharide [DeltaUA2S(1-->4)-alpha-D-GlcNS6S], to CTX A3 from Taiwan cobra (Naja atra), however, will not induce aggregation and was, therefore, investigated by high-resolution (1)H NMR. A novel heparin binding site on the convex side of the CTX, near the rigid disulfide bond-tightened core region of Cys38, was identified due to the observation of intermolecular NOEs between the protein and carbohydrate. The derived carbohydrate conformation using complete relaxation and conformational exchange matrix analysis (CORCEMA) of NOEs indicated that the glycosidic linkage conformation and the ring conformation of the unsaturated uronic acid in the bound state depended significantly on the charge context of CTX molecules near the binding site. Specifically, comparative binding studies of several heparin disaccharide homologues with two CTX homologues (CTX Tgamma from Naja nigricollis and CTX A3) indicated that the electrostatic interaction of N-sulfate of glucosamine with NH(3)(+)zeta of Lys12 and of the 2-O-sulfate of the unsaturated uronic acid with NH(3)(+)zeta of Lys5 played an important role. These results also suggest a model on how the CTX-heparin interaction may regulate heparin-induced aggregation of the toxin via the second heparin binding site.  相似文献   

16.
Two fluorescent derivatives of cerebroside sulfate ('sulfatide') have been synthesized and used as substrates for determining arylsulfatase A activity. These were 12-(1-pyrene)dodecanoyl cerebroside sulfate (P12-sulfatide) and 12(1-pyrenesulfonylamido)dodecanoyl cerebroside sulfate (PSA12-sulfatide). When incubated at pH 5.0 in the presence of 5 mM MnCl2 and 5.5 mM of taurodeoxycholate, either substrate was hydrolyzed by arylsulfatase A of human leukocytes. The rate of hydrolysis was proportional to the incubation time and concentration of enzyme; Michaelis-Menten type kinetics were observed with increasing concentrations of substrate. For determining the rate of hydrolysis, each of the two products (i.e., P12- and PSA12-cerebrosides) were separated from the bulk of respective unreacted sulfatide on small columns of DEAE-Sephadex A-25 and their fluorescence intensities read at 343-378 and 350-380 nm for the excitation and emission wavelengths for P12- and PSA12-cerebrosides, respectively. When extracts of skin fibroblasts derived from normal individuals and patients with Maroteaux-Lamy (lacking arylsulfatase B) or metachromatic leukodystrophy (lacking arylsulfatase A) were used as source of enzyme, P12-sulfatide was hydrolyzed by the former two but not by the latter cell extract. Several derivatives of cerebroside sulfate were also synthesized and found to inhibit the hydrolysis of pyrenesulfatide by leukocyte arylsulfatase A. The results demonstrate that these two pyrene containing sulfatides can be effectively used as specific substrates for the determination of arylsulfatase A activity in extract of cells and most probably also of tissues.  相似文献   

17.
The action mechanism of sapecin, an antibacterial peptide with membrane permeabilization activity, was investigated. The dose dependence of the membrane permeabilization caused by sapecin was sigmoidal, suggesting that sapecin oligomerization leads to the membrane permeabilization. Solution nuclear magnetic resonance analysis of the sapecin-phospholipid vesicle complex revealed the surface buried in the membrane and oligomerization surface on the sapecin molecule. The membrane-buried surface of sapecin was determined by observing the transferred cross-saturation phenomena from the alkyl chains of the phospholipid vesicle to the amide protons of sapecin. The membrane-buried surface contains basic and highly exposed hydrophobic residues, which are suitable for interacting with the acidic bacterial membrane. The oligomerization surface was also identified by comparisons between the results from hydrogen-deuterium exchange experiments and transferred cross-saturation experiments. On the basis of the results from the NMR experiments we built a putative model of sapecin oligomers, which provides insights into the membrane permeabilization caused by insect defensins.  相似文献   

18.
Proprotein convertase 7 (PC7) is a member of the subtilisin-like proprotein convertase family, which is involved in the endoproteolysis of a variety of precursor proteins. Under steady state conditions, PC7 is mainly localized in the trans-Golgi network, but a small fraction is found at the cell surface. So far, no sorting signals for membrane trafficking have been identified in PC7. In this study, we have examined the internalization of PC7 from the plasma membrane. Our results show that internalization of PC7 is mediated by clathrin-coated vesicles. After inhibition of clathrin-mediated endocytosis using hypertonic conditions or the small molecule inhibitor, Pitstop 2, PC7 accumulated at the plasma membrane. Furthermore, PC7 was present in isolated clathrin-coated vesicles. To determine the internalization motif, constructs were generated in which parts of the N and C terminus of the cytoplasmic tail of PC7 were deleted, and chimeric proteins were constructed consisting of the luminal and transmembrane domains of Tac (CD25) and parts of the cytoplasmic domain of PC7. Antibody uptake experiments as well as surface biotinylation experiments demonstrated that the region between Ala(713) and Cys(726) in the cytoplasmic domain of PC7 is essential and sufficient for the internalization of PC7 but not for trans-Golgi network localization. Individual amino acids in this region were substituted with alanine, which identified Pro, Leu, and Cys as the essential amino acids. In conclusion, internalization of PC7 depends on a short transferable sequence in the cytoplasmic tail, which contains the three crucial amino acids PLC.  相似文献   

19.
NMR spectroscopic analysis of the C-terminal Kunitz domain fragment (alpha3(VI)) from the human alpha3-chain of type VI collagen has revealed that the side chain of Trp21 exists in two unequally populated conformations. The major conformation (M) is identical to the conformation observed in the X-ray crystallographic structure, while the minor conformation (m) cannot structurally be resolved in detail by NMR due to insufficient NOE data. In the present study, we have applied: (1) rigid and adiabatic mapping, (2) free energy simulations, and (3) molecular dynamic simulations to elucidate the structure of the m conformer and to provide a possible pathway of the Trp21 side chain between the two conformers. Adiabatic energy mapping of conformations of the Trp21 side chain obtained by energy minimization identified two energy minima: One corresponding to the conformation of Trp21 observed in the X-ray crystallographic structure and solution structure of alpha3(VI) (the M conformation) and the second corresponding to the m conformation predicted by NMR spectroscopy. A transition pathway between the M and m conformation is suggested. The free-energy difference between the two conformers obtained by the thermodynamic integration method is calculated to 1.77+/-0.7 kcal/mol in favor of the M form, which is in good agreement with NMR results. Structural and dynamic properties of the major and minor conformers of the alpha3(VI) molecule were investigated by molecular dynamic. Essential dynamics analysis of the two resulting 800 ps trajectories reveals that when going from the M to the m conformation only small, localized changes in the protein structure are induced. However, notable differences are observed in the mobility of the binding loop (residues Thr13-Ile18), which is more flexible in the m conformation than in the M conformation. This suggests that the reorientation of Trp2 might influence the inhibitory activity against trypsin, despite the relative large distance between the binding loop and Trp21.  相似文献   

20.
The Sec1/Munc18 (SM) protein Munc18-1 and the SNAREs syntaxin-1, SNAP-25 and synaptobrevin form the core of the membrane fusion machinery that triggers neurotransmitter release. Munc18-1 binds to syntaxin-1 folded into a closed conformation and to the SNARE complex formed by the three SNAREs, which involves an open syntaxin-1 conformation. The former interaction is likely specialized for neurotransmitter release, whereas SM protein/SNARE complex interactions are likely key for all types of intracellular membrane fusion. It is currently unclear whether the closed conformation is highly or only marginally populated in isolated syntaxin-1, and whether Munc18-1 stabilizes the close conformation or helps to open it to facilitate SNARE complex formation. A detailed NMR analysis now suggests that the closed conformation is almost quantitatively populated in isolated syntaxin-1 in the absence of oligomerization, and indicates that its structure is very similar to that observed previously in the crystal structure of the Munc18-1/syntaxin-1 complex. Moreover, we demonstrate that Munc18-1 binding prevents opening of the syntaxin-1 closed conformation. These results support a model whereby the closed conformation constitutes a key intrinsic property of isolated syntaxin-1 and Munc18-1 binding stabilizes this conformation; in this model, Munc18-1 plays in addition an active role in downstream events after another factor(s) helps to open the syntaxin-1 conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号