首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resonance Raman spectra of cytochrome c oxidase in protonated buffer compared to that in deuterated buffer indicate that water molecules are near the heme of cytochrome a. Differences in widths of the heme line at 1610 cm-1, after short exposure to D2O, and, additionally, of the heme line at 1625 cm-1, after long exposure, can be accounted for by changes in resonance vibrational energy transfer between modes of cytochrome a2+ and the bending mode of water molecules in the heme pocket. On the basis of the assignment of these modes, we place one water molecule near the vinyl group and one water molecule near the formyl group of the cytochrome a heme. These water molecules may play several possible functional roles.  相似文献   

2.
Resonance Raman (RR) spectra of the "rapid" and "slow" forms (Baker et al., 1987) of resting cytochrome oxidase obtained with Soret excitation at 413.1 nm are reported. There are a number of conspicuous differences between the two forms in the high-frequency region of the RR spectrum which involve changes in Raman intensity arising from a blue shift in the Soret maximum of cytochrome a3 upon conversion to the slow form. In the low-frequency region a peak present at 223 cm-1 in the rapid form shifts to 220 cm-1 in the slow form; this peak is assigned as the cytochrome a3 Fe(III)-N(His-Im) stretch. The slow form of the enzyme possesses greater intensity in RR peaks near 1620 cm-1 which have been previously attributed by others to partial photoreduction of the enzyme. We have quantitated the amount of laser-induced photoreduction in these RR spectra by comparison with the spectra of mixed-valence derivatives of the enzyme and find that these 1620-cm-1 features are unreliable indicators of photoreduction. The spectra of the fast- and slow-reacting species in H2O and D2O have been compared. The fast-reacting form exhibits a 4-cm-1 shift, from 223 to 219 cm-1, upon transferring to D2O in a peak which we assign as the cytochrome a3 Fe(III)-N(His-Im) stretch. There is a parallel shift in the feature at 1651 cm-1 due to the C = O stretch of the formyl group of cytochrome a. These deuterium shifts are not observed in the slow form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
I Salmeen  L Rimai  G Babcock 《Biochemistry》1978,17(5):800-806
We report 441.6 nm excitation resonance Raman spectra of oxidized and reduced monomeric heme a-imidazole, cytochrome oxidase-exogenous ligand complexes in various redox states, and alkaline denatured oxidase. These data show that, in reduced oxidase, the cytochrome a3 Raman spectrum has bands at 215, 364, 1230, and 1670 cm-1 not observed in the cytochrome a spectrum. The appearance of these bands in the reduced cytochrome a3 spectrum is due to interactions between the heme a of cytochrome a3 and its protein environment and not to intrinsic properties of heme a. These interactions are pH sensitive and strongly influence the vibrational spectra of both heme a groups. We assign the 1670-cm-1 band to the heme a formyl substituent and propose that the intensity of the 1670 cm-1 is high for reduced cytochrome a3 because the C==O lies in the porphyrin plane and is very weak for oxidized and reduced cytochrome a, oxidized cytochrome a3, and oxidized and reduced heme a-imidazole because the C==O lies out of the plane. We suggest that movement of the C==O in and out of the plane explains the ligand induced spectral shift in the optical absorption spectrum of reduced cytochrome a3. Finally, we confirm the observation of Adar & Yonetani (private communication) that, under laser illumination, resting oxidase is photoreactive.  相似文献   

4.
Heme A is a prosthetic group of all eukaryotic and some prokaryotic cytochrome oxidases. This heme differs from heme B (protoheme) at two carbon positions of the porphyrin ring. The synthesis of heme A begins with farnesylation of the vinyl group at carbon C-2 of heme B. The heme O product of this reaction is then converted to heme A by a further oxidation of a methyl to a formyl group on C-8. In a previous study (Barros, M. H., Carlson, C. G., Glerum, D. M., and Tzagoloff, A. (2001) FEBS Lett. 492, 133-138) we proposed that the formyl group is formed by an initial hydroxylation of the C-8 methyl by a three-component monooxygenase consisting of Cox15p, ferredoxin, and ferredoxin reductase. In the present study three lines of evidence confirm a requirement of ferredoxin in heme A synthesis. 1) Temperature-conditional yah1 mutants grown under restrictive conditions display a decrease in heme A relative to heme B. 2) The incorporation of radioactive delta-aminolevulinic acid into heme A is reduced in yah1 ts but not in the wild type after the shift to the restrictive temperature; and 3) the overexpression of Cox15p in cytochrome oxidase mutants that accumulate heme O leads to an increased mitochondrial concentration of heme A. The increase in heme A is greater in mutants that overexpress Cox15p and ferredoxin. These results are consistent with a requirement of ferredoxin and indirectly of ferredoxin reductase in hydroxylation of heme O.  相似文献   

5.
G B Ray  R A Copeland  C P Lee  T G Spiro 《Biochemistry》1990,29(13):3208-3213
Resonance Raman (RR) spectra are reported for reduced submitochondrial particles (SMP) with excitation at 441.6 nm, where Raman bands of the cytochrome c oxidase heme a groups are selectively enhanced. Addition of ATP to energize the membranes induces the formation of a new band at 1644 cm-1 and partial loss of intensity in a band at 1567 cm-1. These changes are modeled by adding cyanide to reduced cytochrome c oxidase and are attributed to partial conversion of cytochrome (cyt) a3 from a high-spin to a low-spin state. This conversion is abolished by addition of excess oligomycin, an ATPase inhibitor, or FCCP, an uncoupler of proton translocation, and is reversed when the ATP is consumed. The observed spin-state conversion is attributed to the binding of an endogenous ligand to the cyt a3 Fe atom. This ligation is suggested to be induced by a local increase in pH and/or by a global conformation change associated with the generation of a transmembrane potential. Since O2 binding requires a vacant coordination site at cyt a3, the ligation of this site must retard O2 reduction and could thus provide a simple mechanism for energy-linked regulation of respiration. No changes in the RR spectrum were observed upon adding Ca2+ or H+ to reduced cytochrome c oxidase. The cyt a3 spin-state change associated with membrane energization is unrelated to the cyt a absorption red shift induced by adding Ca2+ or H+ to cytochrome c oxidase.  相似文献   

6.
Manganese peroxidase (MnP) from Phanerochaete chrysosporium undergoes a pH-dependent conformational change evidenced by changes in the electronic absorption spectrum. This high- to low-spin alkaline transition occurs at approximately 2 pH units lower in an F190I mutant MnP when compared to the wild-type enzyme. Herein, we provide evidence that these spectral changes are attributable to the formation of a bis(histidyl) heme iron complex in both proteins at high pH. The resonance Raman (RR) spectra of both ferric proteins at high pH are similar, indicating similar heme environments in both proteins, and resemble that of ferric cytochrome b(558), a protein that contains a bis-His iron complex. Upon reduction with dithionite at high pH, the visible spectra of both the wild-type and F190I MnP exhibit absorption maxima at 429, 529, and 558 nm, resembling the absorption spectrum of ferrous cytochrome b(558). RR spectra of the reduced wild-type and F190I mutant proteins at high pH are also similar to the RR spectrum of ferrous cytochrome b(558), further suggesting that the alkaline low-spin species is a bis(histidyl) heme derivative. No shift in the low-frequency RR bands was observed in 75% (18)O-labeled water, indicating that the low-spin species is most likely not a hydroxo-heme derivative. Electronic and RR spectra also indicate that addition of Ca(2+) to either the ferric or ferrous enzymes at high pH completely restores the high-spin pentacoordinate species. Other divalent metals, such as Mn(2+), Mg(2+), Zn(2+), or Cd(2+), do not restore the enzyme under the conditions studied.  相似文献   

7.
The 1:1 complex between horse heart cytochrome c and bovine cytochrome c oxidase, and between yeast cytochrome c and Paracoccus denitrificans cytochrome c oxidase have been studied by a combination of second derivative absorption, circular dichroism (CD), and resonance Raman spectroscopy. The second derivative absorption and CD spectra reveal changes in the electronic transitions of cytochrome a upon complex formation. These results could reflect changes in ground state heme structure or changes in the protein environment surrounding the chromophore that affect either the ground or excited electronic states. The resonance Raman spectrum, on the other hand, reflects the heme structure in the ground electronic state only and shows no significant difference between cytochrome a vibrations in the complex or free enzyme. The only major difference between the Raman spectra of the free enzyme and complex is a broadening of the cytochrome a3 formyl band of the complex that is relieved upon complex dissociation at high ionic strength. These data suggest that the differences observed in the second derivative and CD spectra are the result of changes in the protein environment around cytochrome a that affect the electronic excited state. By analogy to other protein-chromophore systems, we suggest that the energy of the Soret pi* state of cytochrome a may be affected by (1) changes in the local dielectric, possibly brought about by movement of a charged amino acid side chain in proximity to the heme group, or (2) pi-pi interactions between the heme and aromatic amino acid residues.  相似文献   

8.
We report the first resonance Raman scattering studies of NO-bound cytochrome c oxidase. Resonance Raman scattering and optical absorption spectra have been obtained on the fully reduced enzyme (a2+, a2+(3) NO) and the mixed valence enzyme (a3+, a2+(3) NO). Clear vibrational frequency shifts are detected in the lines associated with cytochrome a in comparing the two redox states. With 441.6 nm excitation the fully reduced preparation yields a spectrum similar to that of carbon monoxide-bound cytochrome c oxidase and is dominated by the spectrum of reduced cytochrome a. In contrast, in the mixed valence preparation no contributions from reduced cytochrome a are evident in the spectrum, verifying that this heme is no longer in the Fe2+ state. In the mixed valence NO-bound samples, a line appears at approximately 545 cm-1, a frequency similar to that found in NO-bound hemoglobin and myoglobin and assigned as an Fe-N-O-bending mode in those proteins. We do not detect this line in the spectrum of the fully reduced NO-bound enzyme. The carbonyl line of the cytochrome a3 heme formyl group in the fully reduced NO-bound enzyme appears at approximately equal to 1666 cm-1 in the resonance Raman spectrum. In the mixed valence NO-bound preparation the frequency of the carbonyl line increases by 1.2 cm-1 to approximately equal to 1667 cm-1. Thus, modes in cytochrome a2+(3) NO are sensitive to the redox state of the cytochrome a and/or CuA centers. We propose that the redox sensitivity of the formyl mode and the Fe-N-O mode results from an interaction between cytochrome a2+(3) (NO) and the cytochrome a-CuA pair, and is linked to the cytochrome a3 (NO) by the coupling between CuB and the NO-bound cytochrome a3 heme.  相似文献   

9.
Diarylpropane oxygenase, an H2O2-dependent lignin-degrading enzyme from the basidiomycete fungus Phanerochaete chrysosporium, catalyzes the oxygenation of various lignin model compounds with incorporation of a single atom of dioxygen (O2). Diarylpropane oxygenase is also capable of oxidizing some alcohols to aldehydes and/or ketones. This enzyme (Mr = 41,000) contains a single iron protoporphyrin IX prosthetic group. Previous studies revealed that the Soret maximum of the ferrous-CO complex of diarylpropane oxygenase is at approximately 420 nm, as in ferrous-CO myoglobin (Mb), and not like the approximately 450 nm absorption of the CO complex of the ubiquitous heme monooxygenase, cytochrome P-450. This spectral difference between two functionally similar heme enzymes is of interest. To elucidate the structural requirements for heme iron-based oxygenase reactions, we have compared the electronic absorption, EPR, and resonance Raman (RR) spectral properties of diarylpropane oxygenase with those of other heme proteins and enzymes of known axial ligation. The absorption spectra of native (ferric), cyano, and ferrous diarylpropane oxygenase closely resemble those of the analogous myoglobin complexes. The EPR g values of native diarylpropane oxygenase, 5.83 and 1.99, also agree well with those of aquometMb. The RR spectra of ferric diarylpropane oxygenase have their spin- and oxidation-state marker bands at frequencies analogous to those of aquometMb and indicate a high-spin, hexacoordinate ferric iron. The RR spectra of ferrous diarylpropane oxygenase have frequencies analogous to those of deoxy-Mb that suggest a high-spin, pentacoordinate Fe(II) in the reduced form. The RR spectra of both ferric and ferrous diarylpropane oxygenase are less similar to those of horseradish peroxidase, catalase, or cytochrome c peroxidase and are clearly distinct from those of P-450. These observations suggest that the fifth ligand to the heme iron of diarylpropane oxygenase is a neutral histidine and that the iron environment must resemble that of the oxygen transport protein, myoglobin, rather than that of the peroxidases, catalase, or P-450. Given the functional similarity between diarylpropane oxygenase and P-450, this work implies that the mechanism of oxygen insertion for the two systems is different.  相似文献   

10.
Two-subunit SoxB-type cytochrome c oxidase in Bacillus stearothermophilus was over-produced, purified, and examined for its active site structures by electron paramagnetic resonance (EPR) and resonance Raman (RR) spectroscopies. This is cytochrome bo3 oxidase containing heme B at the low-spin heme site and heme O at the high-spin heme site of the binuclear center. EPR spectra of the enzyme in the oxidized form indicated that structures of the high-spin heme O and the low-spin heme B were similar to those of SoxM-type oxidases based on the signals at g=6.1, and g=3.04. However, the EPR signals from the CuA center and the integer spin system at the binuclear center showed slight differences. RR spectra of the oxidized form showed that heme O was in a 6-coordinated high-spin (nu3 = 1472 cm(-1)), and heme B was in a 6-coordinated low-spin (nu3 = 1500 cm(-1)) state. The Fe2+-His stretching mode was observed at 211 cm(-1), indicating that the Fe2+-His bond strength is not so much different from those of SoxM-type oxidases. On the contrary, both the Fe2+-CO stretching and Fe2+-C-O bending modes differed distinctly from those of SoxM-type enzymes, suggesting some differences in the coordination geometry and the protein structure in the proximity of bound CO in cytochrome bo3 from those of SoxM-type enzymes.  相似文献   

11.
The optical spectrum of heme a is red-shifted in aa(3)-type cytochrome c oxidases compared to isolated low-spin heme A model compounds. Early spectroscopic studies indicated that this may be due to hydrogen-bonding of the formyl group of heme a to an amino acid in the close vicinity. Here we show that most of the optical spectral shift of native heme a is due to a hydrogen-bonding interaction between the formyl group and arginine-54 in subunit I of cytochrome aa(3) from Paracoccus denitrificans, and that a smaller part is due to an electrostatic interaction between the D ring propionate of heme a and arginine-474.  相似文献   

12.
Arginine 54 in subunit I of cytochrome c oxidase from Paracoccus denitrificans interacts with the formyl group of heme a. Mutation of this arginine to methionine (R54M) dramatically changes the spectral properties of heme a and lowers its midpoint redox potential [Kannt et al. (1999) J. Biol. Chem. 274, 37974-37981; Lee et al. (2000) Biochemistry 39, 2989-2996; Riistama et al. (2000) Biochim. Biophys. Acta 1456, 1-4]. During anaerobic reduction of the mutant enzyme, a small fraction of heme a is reduced first along with heme a(3), while most of heme a is reduced later. This suggests that electron transfer is impaired thermodynamically due to the low redox potential of heme a but that it still takes place from Cu(A) via heme a to the binuclear site as in wild-type enzyme, with no detectable bypass from Cu(A) directly to the binuclear site. Consistent with this, the proton translocation efficiency is unaffected at 1 H(+)/e(-) in the mutant enzyme, although turnover is strongly inhibited. Time-resolved electrometry shows that when the fully reduced enzyme reacts with O(2), the fast phase of membrane potential generation during the P(R )()--> F transition is unaffected by the mutation, whereas the slow phase (F --> O transition) is strongly decelerated. In the 3e(-)-reduced mutant enzyme heme a remains oxidized due to its lowered midpoint potential, whereas Cu(A) and the binuclear site are reduced. In this case the reaction with O(2) proceeds via the P(M) state because transfer of the electron from Cu(A) to the binuclear site is delayed. The single phase of membrane potential generation in the 3e(-)-reduced mutant enzyme, which thus corresponds to the P(M)--> F transition, is decelerated, but its amplitude is comparable to that of the P(R)--> F transition. From this we conclude that the completely (4e(-)) reduced enzyme is fully capable of proton translocation.  相似文献   

13.
Resonance Raman spectra have been recorded for heme a derivatives in which the oxygen atom of the formyl group has been isotopically labeled and for Schiff base derivatives of heme a in which the Schiff base nitrogen has been isotopically labeled. The 14N-15N isotope shift in the C = N stretching mode of the Schiff base is close to the theoretically predicted shift for an isolated C = N group for both the ferric and ferrous oxidation states and in both aqueous and nonaqueous solutions. In contrast, the 16O-18O isotope shift of the C = O stretching mode of the formyl group is significantly smaller than that predicted for an isolated C = O group and is also dependent on whether the environment is aqueous or nonaqueous. This differences between the theoretically predicted shifts and the observed shifts are attributed to coupling of the C = O stretching mode to as yet unidentified modes of the heme. The complex behavior of the C = O stretching vibration precludes the possibility of making simple interpretations of frequency shifts of this mode in cytochrome c oxidase.  相似文献   

14.
As the final electron acceptor in the respiratory chain of eukaryotic and many prokaryotic organisms, cytochrome c oxidase catalyzes the reduction of oxygen to water, concomitantly generating a proton gradient. X-ray structures of two cytochrome c oxidases have been reported, and in each structure three possible pathways for proton translocation are indicated: the D-, K-, and H-channels. The putative H-channel is most clearly delineated in the bovine heart oxidase and has been proposed to be functionally important for the translocation of pumped protons in the mammalian oxidase [Yoshikawa et al. (1998) Science 280, 1723-1729]. In the present work, the functional importance of residues lining the putative H-channel in the oxidase from Rhodobacter sphaeroides are examined by site-directed mutagenesis. Mutants were generated in eight different sites and the enzymes have been purified and characterized. The results suggest that the H-channel is not functionally important in the prokaryotic oxidase, in agreement with the conclusion from previous work with the oxidase from Paracoccus denitrificans [Pfitzner et al. (1998) J. Biomembr. Bioenerg. 30, 89-93]. Each of the mutants in R. sphaeroides, with an exception at only one position, is enzymatically active and pumps protons in reconstituted proteoliposomes. This includes H456A, where in the P. denitrificans oxidase a leucine residue substituted for the corresponding residue resulted in inactive enzyme. The only mutations that result in completely inactive enzyme in the set examined in the R. sphaeroides oxidase are in R52, a residue that, along with Q471, appears to be hydrogen-bonded to the formyl group of heme a in the X-ray structures. To characterize the interactions between this residue and the heme group, resonance Raman spectra of the R52 mutants were obtained. The frequency of the heme a formyl stretching mode in the R52A mutant is characteristic of that seen in non-hydrogen-bonded model heme a complexes. Thus the data confirm the presence of hydrogen bonding between the heme a formyl group and the R52 side chain, as suggested from crystallographic data. In the R52K mutant, this hydrogen bonding is maintained by the lysine residue, and this mutant enzyme retains near wild-type activity. The heme a formyl frequency is also affected by mutation of Q471, confirming the X-ray models that show this residue also has hydrogen-bonding interactions with the formyl group. Unlike R52, however, Q471 does not appear to be critical for the enzyme function.  相似文献   

15.
FTIR difference spectroscopy is used to reveal changes in the internal structure and amino acid protonation states of bovine cytochrome c oxidase (CcO) that occur upon photolysis of the CO adduct of the two-electron reduced (mixed valence, MV) and four-electron reduced (fully reduced, FR) forms of the enzyme. FTIR difference spectra were obtained in D(2)O (pH 6-9.3) between the MV-CO adduct (heme a(3) and Cu(B) reduced; heme a and Cu(A) oxidized) and a photostationary state in which the MV-CO enzyme is photodissociated under constant illumination. In the photostationary state, part of the enzyme population has heme a(3) oxidized and heme a reduced. In MV-CO, the frequency of the stretch mode of CO bound to ferrous heme a(3) decreases from 1965.3 cm(-1) at pH* 相似文献   

16.
Lepp H  Svahn E  Faxén K  Brzezinski P 《Biochemistry》2008,47(17):4929-4935
Cytochrome c oxidase couples electron transfer from cytochrome c to O 2 to proton pumping across the membrane. In the initial part of the reaction of the reduced cytochrome c oxidase with O 2, an electron is transferred from heme a to the catalytic site, parallel to the membrane surface. Even though this electron transfer is not linked to proton uptake from solution, recently Belevich et al. [(2006) Nature 440, 829] showed that it is linked to transfer of charge perpendicular to the membrane surface (electrogenic reaction). This electrogenic reaction was attributed to internal transfer of a proton from Glu286, in the D proton pathway, to an unidentified protonatable site "above" the heme groups. The proton transfer was proposed to initiate the sequence of events leading to proton pumping. In this study, we have investigated electrogenic reactions in structural variants of cytochrome c oxidase in which residues in the second, K proton pathway of cytochrome c oxidase were modified. The results indicate that the electrogenic reaction linked to electron transfer to the catalytic site originates from charge transfer within the K pathway, which presumably facilitates reduction of the site.  相似文献   

17.
WEFT-NOESY and transfer WEFT-NOESY NMR spectra were used to determine the heme proton assignments for Rhodobacter capsulatus ferricytochrome c2. The Fermi contact and pseudo-contact contributions to the paramagnetic effect of the unpaired electron in the oxidized state were evaluated for the heme and ligand protons. The chemical shift assignments for the 1H and 15N NMR spectra were obtained by a combination of 1H-1H and 1H-15N two-dimensional NMR spectroscopy. The short-range nuclear Overhauser effect (NOE) data are consistent with the view that the secondary structure for the oxidized state of this protein closely approximates that of the reduced form, but with redox-related conformational changes between the two redox states. To understand the decrease in stability of the oxidized state of this cytochrome c2 compared to the reduced form, the structural difference between the two redox states were analyzed by the differences in the NOE intensities, pseudo-contact shifts and the hydrogen-deuterium exchange rates of the amide protons. We find that the major difference between redox states, although subtle, involve heme protein interactions, orientation of the heme ligands, differences in hydrogen bond networks and, possible alterations in the position of some internal water molecules. Thus, it appears that the general destabilization of cytochrome c2, which occurs on oxidation, is consistent with the alteration of hydrogen bonds that result in changes in the internal dynamics of the protein.  相似文献   

18.
Mak PJ  Im SC  Zhang H  Waskell LA  Kincaid JR 《Biochemistry》2008,47(12):3950-3963
Resonance Raman studies of P450 2B4 are reported for the substrate-free form and when bound to the substrates, benzphetamine (BZ) or butylated hydroxytoluene (BHT), the latter representing a substrate capable of inducing an especially effective conversion to the high-spin state. In addition to studies of the ferric resting state, spectra are acquired for the ferrous CO ligated form. Importantly, for the first time, the RR technique is effectively applied to interrogate the changes in active site structure induced by binding of cytochrome P450 reductase (CPR) and Mn(III) cytochrome b 5 (Mn cyt b 5); the manganese derivative of cyt b 5 was employed to avoid spectroscopic interferences. The results, consistent with early work on mammalian P450s, demonstrate that substrate structure has minimal effects on heme structure or the FeCO fragment of the ferrous CO derivatives. Similarly, the data indicate that the protein is flexible and that substrate binding does not exert significant strain on the heme peripheral groups, in contrast to P450 cam, where substantial effects on heme peripheral groups are seen. However, significant differences are observed in the RR spectra of P450 2B4 when bound with the different redox partners, indicating that the heme structure is clearly sensitive to perturbations near the proximal heme binding site. The most substantial changes are displacements of the peripheral vinyl groups toward planarity with the heme macrocycle by cyt b 5 but away from planarity by CPR. These changes can have an impact on heme reduction potential. Most interestingly, these RR results support an earlier observation that the combination of benzphetamine and cyt b 5 binding produce a synergy leading to unique active site structural changes when both are bound.  相似文献   

19.
Alkaline-induced conformational changes at pH 12.0 in the oxidized as well as the reduced state of cytochrome c oxidase have been systematically studied with time-resolved optical absorption and resonance Raman spectroscopies. In the reduced state, the heme a(3) first converts from the native five-coordinate configuration to a six-coordinate bis-histidine intermediate as a result of the coordination of one of the Cu(B) ligands, H290 or H291, to the heme iron. The coordination state change in the heme a(3) causes the alteration in the microenvironment of the formyl group of the heme a(3) and the disruption of the H-bond between R38 and the formyl group of the heme a. This structural transition, which occurs within 1min following the initiation of the pH jump, is followed by a slower reaction, in which Schiff base linkages are formed between the formyl groups of the two hemes and their nearby amino acid residues, presumably R38 and R302 for the heme a and a(3), respectively. In the oxidized enzyme, a similar Schiff base modification on heme a and a(3) was observed but it is triggered by the coordination of the H290 or H291 to heme a(3) followed by the breakage of the native proximal H378-iron and H376-iron bonds in heme a and a(3), respectively. In both oxidation states, the synchronous formation of the Schiff base linkages in heme a and a(3) relies on the structural communication between the two hemes via the H-bonding network involving R438 and R439 and the propionate groups of the two hemes as well as the helix X housing the two proximal ligands, H378 and H376, of the hemes. The heme-heme communication mechanism revealed in this work may be important in controlling the coupling of the oxygen and redox chemistry in the heme sites to proton pumping during the enzymatic turnover of CcO.  相似文献   

20.
The resonance Raman (RR) spectra of oxidized, reduced, and oxidized cyanide-bound cytochrome c oxidase with excitation at several wavelengths in the 600-nm region are presented. No evidence is found for laser-induced photoreduction of the oxidized protein with irradiation at lambda approximately 600 nm at 195 K, in contrast to the predominance of this process upon irradiation in the Soret region at this temperature. The Raman spectra of all three protein species are very similar, and there are no Raman bands which are readily assignable to either cytochrome a or cytochrome a3 exclusively. The Raman spectra of the three protein species do, however, exhibit a number of bands not observed in the RR spectra of other hemoproteins upon exicitation in their visible absorption bands. In particular, strong Raman bands are observed in the low-frequency region of the RR spectra (less than 500 cm-1). The frequencies of these bands are similar to those of the copper-ligand vibrations observed in the RR spectra of type 1 copper proteins upon excitation in the 600-nm absorption band characteristic of these proteins. In cytochrome c oxidase, these bands do not disappear upon reduction of the protein and, therefore, cannot be attributed to copper-ligand vibrations. Thus, all the observed RR bands are associated with the two heme A moieties in the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号