首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We examined the effects of chest wall strapping (CWS) on the response to inhaled methacholine (MCh) and the effects of deep inspiration (DI). Eight subjects were studied on 1 day with MCh inhaled without CWS (CTRL), 1 day with MCh inhaled during CWS (CWSon/on), and 1 day with MCh inhaled during temporary removal of CWS (CWSoff/on). On the CWSon/on day, MCh caused greater increases in pulmonary resistance, upstream resistance, dynamic elastance, residual volume, and greater decreases in maximal expiratory flow than on the CTRL day. On the CWSoff/on day, the changes in these parameters with MCh were not different from the CTRL day. Six of the subjects were again studied using the same protocol on CTRL and CWSon/on days, except that, on a third day, MCh was given after applying the CWS, but the measurements before and after the inhalation were made without CWS (CWSon/off). The latter sequence was associated with more severe airflow obstruction than during CTRL, but less than with CWSon/on. The bronchodilator effects of a DI were blunted when CWS was applied during measurements (CWSon/on and CWSoff/on) but not after it was removed (CWSon/off). We conclude that CWS is capable of increasing airway responsiveness only when it is applied during the inhalation of the constrictor agent. We speculate that breathing at low lung volumes induced by CWS enhances airway narrowing because the airway smooth muscle is adapted at a length at which the contractile apparatus is able to generate a force greater than normal.  相似文献   

5.
Effect of acceleration on regional lung emptying   总被引:1,自引:0,他引:1  
  相似文献   

6.
Conflicting results have been reported on the changes in the distribution of pleural pressures caused by alterations of chest shape. To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. The study was in two parts. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in dog by Hoppin et al. (J. Appl. Physiol. 27: 863-873, 1969).  相似文献   

7.
The transdiaphragmatic pressure twitches (PdiT) in response to single maximal shocks delivered bilaterally to the phrenic nerves were recorded as a function of lung volume when the diaphragm was fresh and when fatigued. All relationships were linear and negatively sloped (all r greater than 0.85). From these relationships PdiT was found to decrease with fatigue more rapidly and to recover more quickly at high than at low lung volumes. Complete recovery of PdiT at all lung volumes was greater than 1 h. Contraction and relaxation rate constants of PdiT did not change significantly with fatigue. We conclude that fatigue affects diaphragm contractility more at high than at low lung volumes and that changes in diaphragm contractility are best reflected in the measurement of PdiT as a function of lung volume.  相似文献   

8.
At functional residual capacity, lung expansion is more uniform in the prone position than in the supine position. We examined the effect of positive airway pressure (Paw) on this position-dependent difference in lung expansion. In supine and prone rabbits postmortem, we measured alveolar size through dependent and nondependent pleural windows via videomicroscopy at Paw of 0 (functional residual capacity), 7, and 15 cmH2O. After the chest was opened, alveolar size was measured in the isolated lung at several transpulmonary pressures (Ptp) on lung deflation. Alveolar mean linear intercept (Lm) was measured from the video images taken in situ. This was compared with those measured in the isolated lung to determine Ptp in situ. In the supine position, the vertical Ptp gradient increased from 0.52 cmH2O/cm at 0 cmH2O Paw to 0.90 cmH2O/cm at 15 cmH2O Paw, while the vertical gradient in Lm decreased from 2.17 to 0.80 microns/cm. In the prone position, the vertical Ptp gradient increased from 0.06 cmH2O/cm at 0 cmH2O Paw to 0.35 cmH2O/cm at 15 cmH2O Paw, but there was no change in the vertical Lm gradient. In anesthetized paralyzed rabbits in supine and prone positions, we measured pleural liquid pressure directly at 0, 7, and 15 cmH2O Paw with dependent and nondependent rib capsules. Vertical Ptp gradients measured with rib capsules were similar to those estimated from the alveolar size measurements. Lung inflation during mechanical ventilation may reduce the vertical nonuniformities in lung expansion observed in the supine position, thereby improving gas exchange and the distribution of ventilation.  相似文献   

9.
10.
The surface monolayer theory of Clements was tested on open surface films of calf lung surfactant extract in a leak-free vertical film surface balance in which alveolar area (A) changes in each lung zone were simulated in accordance with the theory. We found that: 1) physiologically necessary low surface tension (gamma), < 4 dyn/cm, was sustained only by continuous film compression ("expiration"); 2) compression from A equivalent to total lung capacity to functional residual capacity produced fleeting gamma reduction in all zones and quick reversal to high gamma with A changes that simulated tidal volume (VT) breathing at both 14 (adult) and 40 (neonatal) cpm; 3) phase differences between gamma and A axes of VT loops that indicate mixed surface film composition may be attributable to film inertia and viscoelasticity; 4) estimated alveolar retraction pressure due to gamma (P gamma) exceeds "net" transpulmonary pressure, i.e., favors alveolar collapse, under virtually all conditions of the theory in all zones; 5) return to transient, fleeting low gamma in successive VT cycles was determined by the inherent difference in compression and decompression rates, which results in exhaustion of available A in very few cycles; 6) the "sigh", which restores stable low gamma according to the theory, actually produced unstable high gamma during virtually all phases of the maneuver. In contrast, closed bubble films of the surfactant were structurally stable and produce stable near 0 gamma and P gamma.  相似文献   

11.
12.
13.
An animal model for the study of regional lung function is described. In sheep, the bronchus to the right apical lobe (RAL) of the lung arises directly from the trachea. A tracheal divider, inserted under local anesthesia via a permanent tracheostomy, was used to separate the ventilation of the RAL from that of the rest of the lung. Lobar blood flow was estimated from the RAL contribution to the pulmonary clearance of an intravenous bolus of 85Kr. Gas exchange was measured by conventional methods. Expressed as a percentage of the value obtained for the whole lung, lobar expired volume was 14.7 +/- 4.3%, capillary perfusion was 12.3 +/- 4.2%, oxygen uptake was 14.7 +/- 4.9%, and carbon dioxide production was 13.4 +/- 5.5% (mean +/- SD of 25 studies in 11 animals breathing air). The model permits the study of experimental conditions confined to a single lobe of the lung and offers the advantages of an intact chest wall, spontaneous ventilation and an unanesthetized animal.  相似文献   

14.
Effect of body position on regional diaphragm function in dogs   总被引:2,自引:0,他引:2  
The in situ lengths of muscle bundles of the crural and three regions of the costal diaphragm between origin and insertion were determined with a video roentgenographic technique in dogs. At total lung capacity (TLC) in both the prone and supine positions, the length of the diaphragm is not significantly different from the unstressed excised length, suggesting that the diaphragm is not under tension at TLC and that there is a hydrostatic gradient of pleural pressure on the diaphragmatic surface. Except for the ventral region of the costal diaphragm, which does not change length at lung volumes greater than 70% TLC, all other regions are stretched during passive deflations from TLC. Therefore below TLC the diaphragm is under passive tension and supports a transdiaphragmatic pressure (Pdi). The length of the diaphragm relative to its unstressed length is not uniform at functional residual capacity (FRC) and does not follow a strict vertical gradient that reverses when the animal is changed from the supine to the prone position. By inference, the length of muscle bundles is determined by factors other than the vertical gradient of Pdi. During mechanical ventilation, regional shortening is identical to the passive deflation length-volume relationship near FRC. Prone and supine FRC is the same, but the diaphragm is slightly shorter in the prone position. In both positions, during spontaneous ventilation there are no consistent differences in regional fractional shortening, despite regional differences in initial length relative to unstressed length.  相似文献   

15.
Effect of gravity on chest wall mechanics.   总被引:1,自引:0,他引:1  
Chest wall mechanics was studied in four subjects on changing gravity in the craniocaudal direction (G(z)) during parabolic flights. The thorax appears very compliant at 0 G(z): its recoil changes only from -2 to 2 cmH(2)O in the volume range of 30-70% vital capacity (VC). Increasing G(z) from 0 to 1 and 1.8 G(z) progressively shifted the volume-pressure curve of the chest wall to the left and also caused a fivefold exponential decrease in compliance. For lung volume <30% VC, gravity has an inspiratory effect, but this effect is much larger going from 0 to 1 G(z) than from 1 to 1.8 G(z). For a volume from 30 to 70% VC, the effect is inspiratory going from 0 to 1 G(z) but expiratory from 1 to 1.8 G(z). For a volume greater than approximately 70% VC, gravity always has an expiratory effect. The data suggest that the chest wall does not behave as a linear system when exposed to changing gravity, as the effect depends on both chest wall volume and magnitude of G(z).  相似文献   

16.
17.
Effect of body orientation on regional lung expansion in dog and sloth   总被引:3,自引:0,他引:3  
Recent studies (E.A. Hoffman, J. Appl. Physiol. 59: 468-480, 1985) using fast multisliced X-ray computed tomography have demonstrated a ventral-dorsal gradient of fractional lung air content (3.29% air/cm lung height) in supine dogs and an essentially uniform ventral-dorsal air content distribution in the prone dogs [mean = 66 +/- 0.6% (SE) air content]. Since the prone orientation is the dog's normal body posture, we sought to study an animal whose normal body posture was "opposite" to that of the dog. Four two-toed sloths were scanned in the Dynamic Spatial Reconstructor in the prone and supine postures. A supine fractional air content gradient was demonstrated with a regression equation of y = 2.09x + 74.3 (r = 0.92), where y is percent air content and x is vertical height in the lung, and ventral-dorsal air content distribution in the prone posture was uniform with a mean of 85 +/- 0.4% (SE) air content. The low functional residual capacity lung density in the sloth was attributable to unusually large alveoli. The mean heart volume-to-body weight ratio in the dogs was 16.4 +/- 0.6 (SE) ml/kg and that in the sloth was 7.3 +/- 0.4 (SE) ml/kg. Mean lung volume-to-body weight ratios for dogs and sloths were 57 +/- 7 (SE) and 89 +/- 6 ml/kg, respectively. Of particular interest was the fact that large changes in prone vs. supine rib cage and diaphragm geometry previously found in dogs did not occur in sloths, though significant alterations of ventral and dorsal lung geometry prone vs. supine were demonstrated, and lung shape changes in both dog and sloth are attributable to shifts in the intrathoracic position of mediastinal structures.  相似文献   

18.
19.
20.
The effects of pulse lung inflation (LI) on expiratory muscle activity and phase duration (Te) were determined in anesthetized, spontaneously breathing dogs (n = 20). A volume syringe was used to inflate the lungs at various times during the expiratory phase. The magnitude of lung volume was assessed by the corresponding change in airway pressure (Paw; range 2-20 cmH(2)O). Electromyographic (EMG) activities were recorded from both thoracic and abdominal muscles. Parasternal muscle EMG was used to record inspiratory activity. Expiratory activity was assessed from the triangularis sterni (TS), internal intercostal (IIC), and transversus abdominis (TA) muscles. Lung inflations <7 cmH(2)O consistently inhibited TS activity but had variable effects on TA and IIC activity and expiratory duration. Lung inflations resulting in Paw values >7 cmH(2)O, however, inhibited expiratory EMG activity of each of the expiratory muscles and lengthened Te in all animals. The responses of expiratory EMG and Te were directly related to the magnitude of the lung inflation. The inhibition of expiratory motor activity was independent of the timing of pulse lung inflation during the expiratory phase. The inhibitory effects of lung inflation were eliminated by bilateral vagotomy and could be reproduced by electrical stimulation of the vagus nerve. We conclude that pulse lung inflation resulting in Paw between 7 and 20 cmH(2)O produces a vagally mediated inhibition of expiratory muscle activity that is directly related to the magnitude of the inflation. Lower inflation pressures produce variable effects that are muscle specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号