首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model.  相似文献   

2.
The nuclear receptor COUP TFI (also known as Nr2f1) plays major roles in specifying distinct neuronal subtypes during patterning of the neocortical motor and somatosensory cortex, as well as in regulating the longitudinal growth of the hippocampus during development. In humans, mutations in the NR2F1 gene lead to a global developmental delay and intellectual disabilities. While more than 30% of patients show behavioral features of autism spectrum disorder, 16% of haploinsufficient children show signs of hyperactivity and impulsivity. Loss of COUP‐TFI in the cortical mouse primordium results in altered area organization and serotonin distribution, abnormal coordination of voluntary movements and learning and memory deficits. Here, we asked whether absence of COUP‐TFI affects locomotor activity, anxiety, as well as depression. Mice mutant for COUP‐TFI have normal motor coordination, but significant traits of hyperactivity, which does not seem to respond to N‐Methyl‐D‐aspartate (NMDA) antagonists. However, no changes in anxiety, despite increased locomotor performances, were observed in the open field task. On the contrary, elevated plus maze and dark‐light test explorations indicate a decreased anxiety‐like behavior in COUP‐TFI mutant mice. Finally, significantly reduced immobility in the forced swim test and no changes in anhedonia in the sucrose preference task suggest no particular depressive behaviors in mutant mice. Taken together, our study shows that loss of COUP‐TFI leads to increased locomotor activity but less anxiety and contributes in further deciphering the pathophysiology of patients haploinsufficient for NR2F1.  相似文献   

3.
Reduced NMDA-receptor (NMDAR) function has been implicated in the pathophysiology of neuropsychiatric disease, most strongly in schizophrenia but also recently in autism spectrum disorders (ASD). To determine the direct contribution of NMDAR dysfunction to disease phenotypes, a mouse model with constitutively reduced expression of the obligatory NR1 subunit has been developed and extensively investigated. Adult NR1(neo-/-) mice show multiple abnormal behaviors, including reduced social interactions, locomotor hyperactivity, self-injury, deficits in prepulse inhibition (PPI) and sensory hypersensitivity, among others. Whereas such phenotypes have largely been interpreted in the context of schizophrenia, these behavioral abnormalities are rather non-specific and are frequently present across models of diseases characterized by negative symptom domains. This study investigated auditory electrophysiological and behavioral paradigms relevant to autism, to determine whether NMDAR hypofunction may be more consistent with adult ASD-like phenotypes. Indeed, transgenic mice showed behavioral deficits relevant to all core ASD symptoms, including decreased social interactions, altered ultrasonic vocalizations and increased repetitive behaviors. NMDAR disruption recapitulated clinical endophenotypes including reduced PPI, auditory-evoked response N1 latency delay and reduced gamma synchrony. Auditory electrophysiological abnormalities more closely resembled those seen in clinical studies of autism than schizophrenia. These results suggest that NMDAR hypofunction may be associated with a continuum of neuropsychiatric diseases, including schizophrenia and autism. Neural synchrony abnormalities suggest an imbalance of glutamatergic and GABAergic coupling and may provide a target, along with behavioral phenotypes, for preclinical screening of novel therapeutics.  相似文献   

4.
N-methyl-D-aspartate receptors (NMDARs) represent a subclass of glutamate receptors that play a critical role in neuronal development and physiology. We report here the generation of mice expressing only 5% of normal levels of the essential NMDAR1 (NR1) subunit. Unlike NR1 null mice, these mice survive to adulthood and display behavioral abnormalities, including increased motor activity and stereotypy and deficits in social and sexual interactions. These behavioral alterations are similar to those observed in pharmacologically induced animal models of schizophrenia and can be ameliorated by treatment with haloperidol or clozapine, antipsychotic drugs that antagonize dopaminergic and serotonergic receptors. These findings support a model in which reduced NMDA receptor activity results in schizophrenic-like behavior and reveals how pharmacological manipulation of monoaminergic pathways can affect this phenotype.  相似文献   

5.
Proteins of the Homer1 immediate early gene family have been associated with synaptogenesis and synaptic plasticity suggesting broad behavioral consequences of loss of function. This study examined the behavior of male Homer1 knockout (KO) mice compared with wild-type (WT) and heterozygous mice using a battery of 10 behavioral tests probing sensory, motor, social, emotional and learning/memory functions. KO mice showed mild somatic growth retardation, poor motor coordination, enhanced sensory reactivity and learning deficits. Heterozygous mice showed increased aggression in social interactions with conspecifics. The distribution of mGluR5 and N-methyl-D-aspartate receptors (NMDA) receptors appeared to be unaltered in the hippocampus (HIP) of Homer1 KO mice. The results indicate an extensive range of disrupted behaviors that should contribute to the understanding of the Homer1 gene in brain development and behavior.  相似文献   

6.
GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.  相似文献   

7.
Receptor tyrosine kinases (RTKs) are membrane spanning proteins with intrinsic kinase activity. Although these receptors are known to be involved in proliferation and differentiation of cells, their roles in regulating central synaptic transmission are largely unknown. In CA1 pyramidal neurons, activation of D2 class dopamine receptors depressed excitatory transmission mediated by the NMDA subtype of glutamate receptor. This depression resulted from the quinpirole-induced release of intracellular Ca(2+) and enhanced Ca(2+)-dependent inactivation of NMDA receptors. The dopamine receptor-mediated depression was dependent on the "transactivation" of PDGFRbeta. Therefore, RTK transactivation provides a novel mechanism of communication between dopaminergic and glutamatergic systems and might help to explain how reciprocal changes in these systems could be linked to the deficits in cognition, memory, and attention observed in schizophrenia and attention deficit hyperactivity disorder.  相似文献   

8.
Previous studies using neuronal cell adhesion molecule (NCAM) ?/? knockout (KO) mice provided evidence for a role of NCAMs in social behaviors. However, polysialic acid (PSA), the most important post‐translational modification of NCAM, was also absent in these mice, which makes it difficult to distinguish between the specific involvement of either PSA or NCAM in social interactions. To address this issue, we assessed two lines of mice deficient for one of the two sialyltransferase enzymes required for the polysialylation of NCAM, sialyltransferase‐X (St8SiaII or STX) and polysialyltransferase (ST8SiaIV or PST), in a series of tests for social behaviors. Results showed that PST KO mice display a decreased motivation in social interaction. This deficit can be partly explained by olfactory deficits and was associated with a clear decrease in PSA‐NCAM expression in all brain regions analyzed (amygdala, septum, bed nucleus of the stria terminalis and frontal cortices). STX KO mice displayed both a decreased social motivation and an increased aggressive behavior that cannot be explained by olfactory deficits. This finding might be related to the reduced anxiety‐like behavior, increased locomotion and stress‐induced corticosterone secretion observed in these mice. Moreover, STX KO mice showed mild increase of PSA‐NCAM expression in the lateral septum and the orbitofrontal cortex. Altogether, these findings support a role for PSA‐NCAM in the regulation of social behaviors ranging from a lack of social motivation to aggression. They also underscore STX KO mice as an interesting animal model that combines a behavioral profile of violence and hyperactivity with reduced anxiety‐like behavior.  相似文献   

9.
N-methyl-d-aspartate (NMDA) receptors are the only neurotransmitter receptors whose activation requires two distinct agonists. Heterotetramers of two GluN1 and two GluN2 subunits, NMDA receptors are broadly distributed in the central nervous system, where they mediate excitatory currents in response to synaptic glutamate release. Pore opening depends on the concurrent presence of glycine, which modulates the amplitude and time course of the glutamate-elicited response. Gating schemes for fully glutamate- and glycine-bound NMDA receptors have been described in sufficient detail to bridge the gap between microscopic and macroscopic receptor behaviors; for several receptor isoforms, these schemes include glutamate-binding steps. We examined currents recorded from cell-attached patches containing one GluN1/GluN2A receptor in the presence of several glycine-site agonists and used kinetic modeling of these data to develop reaction schemes that include explicit glycine-binding steps. Based on the ability to match a series of experimentally observed macroscopic behaviors, we propose a model for activation of the glutamate-bound NMDA receptor by glycine that predicts apparent negative agonist cooperativity and glycine-dependent desensitization in the absence of changes in microscopic binding or desensitization rate constants. These results complete the basic steps of an NMDA receptor reaction scheme for the GluN1/GluN2A isoform and prompt a reevaluation of how glycine controls NMDA receptor activation. We anticipate that our model will provide a useful quantitative instrument to further probe mechanisms and structure–function relationships of NMDA receptors and to better understand the physiological and pathological implications of endogenous fluctuations in extracellular glycine concentrations.  相似文献   

10.
NMDA receptors are calcium-permeable ionotropic receptors that detect coincident glutamate binding and membrane depolarization and are essential for many forms of synaptic plasticity in the mammalian brain. The obligatory GluN1 subunit of NMDA receptors is alternatively spliced at multiple sites, generating forms that vary in N-terminal N1 and C-terminal C1, C2, and C2' cassettes. Based on expression of GluN1 constructs in heterologous cells and in wild type neurons, the prevalent view is that the C-terminal cassettes regulate synaptic accumulation and its modulation by homeostatic activity blockade and by protein kinase C (PKC). Here, we tested the role of GluN1 splicing in regulated synaptic accumulation of NMDA receptors by lentiviral expression of individual GluN1 splice variants in hippocampal neurons cultured from GluN1 (-/-) mice. High efficiency transduction of GluN1 at levels similar to endogenous was achieved. Under control conditions, the C2' cassette mediated enhanced synaptic accumulation relative to the alternate C2 cassette, whereas the presence or absence of N1 or C1 had no effect. Surprisingly all GluN1 splice variants showed >2-fold increased synaptic accumulation with chronic blockade of NMDA receptor activity. Furthermore, in this neuronal rescue system, all GluN1 splice variants were equally rapidly dispersed upon activation of PKC. These results indicate that the major mechanisms mediating homeostatic synaptic accumulation and PKC dispersal of NMDA receptors occur independently of GluN1 splice isoform.  相似文献   

11.
N-methyl- D -aspartate receptors (NMDARs) play a pivotal role in excitatory neurotransmission, synaptic plasticity and brain development. Clinical and experimental evidence suggests a dysregulation of NMDAR function and glutamatergic pathways in the pathophysiology of schizophrenia. We evaluated electrophysiological and behavioral properties of NMDAR deficiency utilizing mice that express only 5–10% of the normal level of NMDAR NR1 subunit. Auditory and visual event related potentials yielded significantly increased amplitudes for the P20 and N40 components in NMDAR deficient (NR1neo−/−) mice suggesting decreased inhibitory tone. Compared to wild types, NR1neo−/− mice spent less time in social interactions and showed reduced nest building. NR1neo−/− mice displayed a preference for open arms of a zero maze and central zone of an open field, possibly reflecting decreased anxiety-related behavioral inhibition. However, locomotor activity did not differ between groups in either home cage environment or during behavioral testing. NR1neo−/− mice displayed hyperactivity only when placed in a large unfamiliar environment, suggesting that neither increased anxiety nor non-specific motor activation accounts for differential behavioral patterns. Data suggest that NMDAR NR1 deficiency causes disinhibition in sensory processing as well as reduced behavioral inhibition and impaired social interactions. The behavioral signature in NR1neo−/− mice supports the impact of impaired NMDAR function in a mouse model with possible relevance to negative symptoms in schizophrenia.  相似文献   

12.
NMDA receptors are heteromeric glutamate-gated channels composed of GluN1 and GluN2 subunits. Receptor isoforms that differ in their GluN2-subunit type (A-D) are expressed differentially throughout the central nervous system and have distinct kinetic properties in recombinant systems. How specific receptor isoforms contribute to the functions generally attributed to NMDA receptors remains unknown, due in part to the incomplete functional characterization of individual receptor types and unclear molecular composition of native receptors. We examined the stationary gating kinetics of individual rat recombinant GluN1/GluN2B receptors in cell-attached patches of transiently transfected HEK293 cells and used kinetic analyses and modeling to describe the full range of this receptor's gating behaviors. We found that, like GluN1/GluN2A receptors, GluN1/GluN2B receptors have three gating modes that are distinguishable by their mean open durations. However, for GluN1/GluN2B receptors, the modes also differed markedly in their mean closed durations and thus generated a broader range of open probabilities. We also found that regardless of gating mode, glutamate dissociation occurred ∼4-fold more slowly (k = 15 s−1) compared to that observed in GluN1/GluN2A receptors. On the basis of these results, we suggest that slow glutamate dissociation and modal gating underlie the long heterogeneous activations of GluN1/GluN2B receptors.  相似文献   

13.
Ethanol''s action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75–2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.  相似文献   

14.
15.
Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Realtime PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.  相似文献   

16.
Neuronal nitric oxide synthase (nNOS) forms nitric oxide (NO), which functions as a signaling molecule via S-nitrosylation of various proteins and regulation of soluble guanylate cyclase (cGC)/cyclic guanosine monophosphate (cGMP) pathway in the central nervous system. nNOS signaling regulates diverse cellular processes during brain development and molecular mechanisms required for higher brain function. Human genetics have identified nNOS and several downstream effectors of nNOS as risk genes for schizophrenia. Besides the disease itself, nNOS has also been associated with prefrontal cortical functioning, including cognition, of which disturbances are a core feature of schizophrenia. Although mice with genetic deletion of nNOS display various behavioral deficits, no studies have investigated prefrontal cortex-associated behaviors. Here, we report that nNOS knockout (KO) mice exhibit hyperactivity and impairments in contextual fear conditioning, results consistent with previous reports. nNOS KO mice also display mild impairments in object recognition memory. Most importantly, we report for the first time working memory deficits, potential impairments in prefrontal cortex mediated cognitive function in nNOS KO mice. Furthermore, we demonstrate Disrupted-in-Schizophrenia 1 (DISC1), another genetic risk factor for schizophrenia that plays roles for cortical development and prefrontal cortex functioning, including working memory, is a novel protein binding partner of nNOS in the developing cerebral cortex. Of note, genetic deletion of nNOS appears to increase the binding of DISC1 to NDEL1, regulating neurite outgrowth as previously reported. These results suggest that nNOS KO mice are useful tools in studying the role of nNOS signaling in cortical development and prefrontal cortical functioning.  相似文献   

17.
While the roles of glutamic acid(Glu), arginine vasopressin(AVP) and their respective receptors in anxiety have been thoroughly investigated, the effects of interactions among Glu, N-methyl-D-aspartic acid(NMDA) receptor, AVP and a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid(AMPA) receptor on anxiety are still unclear. In the present study, the agonist and antagonist of the NMDA receptor and AMPA receptor, as well as the antagonist of AVP V1 receptor(V1aR) were introduced into BALB/cJ mice by intracerebroventricular microinjection, and the anxiety-like behaviors of the mice were evaluated by open field and elevated plus-maze tests. Compared with C57BL/6 mice, BALB/cJ mice displayed higher levels of anxiety-like behavior. Significant anxiolytic effects were found in the NMDA receptor antagonist(MK-801) and the AMPA receptor or V1 aR antagonist(SSRI49415), as well as combinations of AVP/MK-801 and SSRI49415/DNQX. These results indicated that anxiety-like behaviors expressed in BALB/CJ mice may be due to a coordination disorder among glutamate, NMDA receptor, AMPA receptor, AVP and V1 aR, resulting in the up-regulation of the NMDA receptor and V1 aR and down-regulation of the AMPA receptor. However, because the AMPA receptor can execute its anxiolytic function by suppressing AVP and V1 aR, we cannot exclude the possibility of the NMDA receptor being activated by AVP acting on V1 aR.  相似文献   

18.

Background

Diacylglycerol kinase (DGK) is an enzyme that phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). DGKβ is widely distributed in the central nervous system, such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. Recent studies reported that the splice variant at the COOH-terminal of DGKβ was related to bipolar disorder, but its detailed mechanism is still unknown.

Methodology/Principal Findings

In the present study, we performed behavioral tests using DGKβ knockout (KO) mice to investigate the effects of DGKβ deficits on psychomotor behavior. DGKβ KO mice exhibited some behavioral abnormalities, such as hyperactivity, reduced anxiety, and reduced depression. Additionally, hyperactivity and reduced anxiety were attenuated by the administration of the mood stabilizer, lithium, but not haloperidol, diazepam, or imipramine. Moreover, DGKβ KO mice showed impairment in Akt-glycogen synthesis kinase (GSK) 3β signaling and cortical spine formation.

Conclusions/Significance

These findings suggest that DGKβ KO mice exhibit lithium-sensitive behavioral abnormalities that are, at least in part, due to the impairment of Akt-GSK3β signaling and cortical spine formation.  相似文献   

19.
Lysophosphatidic acid (LPA) is a bioactive lipid acting on the nervous system through at least 6 different G protein‐coupled receptors. In this study, we examined mice lacking the LPA5 receptor using an extensive battery of behavioral tests. LPA5‐deficient mice showed decreased pain sensitivity in tail withdrawal, faster recovery in one inflammatory pain procedure (complete Freund's adjuvant‐induced inflammation) and attenuated responses under specific neuropathic pain conditions. Notably, deletion of LPA5 also induced nocturnal hyperactivity and reduced anxiety in the mutant mice. Several exploratory tasks revealed signs of reduced anxiety in LPA5 knockout mice including increased visits to the arena center and reduced thigmotaxis in the open field, and more open arm entries in the elevated plus maze. Finally, LPA5 knockout mice also displayed marked reduction in social exploration, although several other tests indicated that these mice were able to respond normally to environmental stimuli. While learning and memory performance was not impaired in LPA5‐deficient mice, we found differences, e.g., targeted swim strategy and reversal learning, as well as scheduled appetitive conditioning that might indicate differential motivational behavior. These results imply that LPA5 might be involved in both nociception and mechanisms of pain hypersensitivity, as well as in anxiety‐related and motivational behaviors. These observations further support the proposed involvement of LPA signaling in psychopathology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号