共查询到20条相似文献,搜索用时 15 毫秒
1.
Simian and human immunodeficiency virus Nef proteins use different surfaces to downregulate class I major histocompatibility complex antigen expression 总被引:1,自引:0,他引:1
下载免费PDF全文

Simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) Nef proteins are related regulatory proteins that share several functions, including the ability to downregulate class I major histocompatibility complex (MHC) and CD4 expression on the cell surface and to alter T-cell-receptor-initiated signal transduction in T cells. We compared the mechanisms used by SIV mac239 Nef and HIV-1 Nef to downregulate class I MHC and found that the ability of SIV Nef to downregulate class I MHC requires a unique C-terminal region of the SIV mac239 Nef molecule which is not found in HIV-1 Nef. Interestingly, mutation of the PxxP motif in SIV Nef, unlike in HIV-1 Nef, does not affect class I MHC downregulation. We also found that downregulation of class I MHC by SIV Nef requires a conserved tyrosine in the cytoplasmic domain of the class I MHC heavy chain and involves accelerated endocytosis of class I complexes, as previously found with HIV-1 Nef. Thus, while SIV and HIV-1 Nef proteins use a similar mechanism to downregulate class I MHC expression, they have evolved different surfaces for molecular interactions with cell factors that regulate class I MHC traffic. Mutations in the C-terminal domain of SIV mac239 Nef selectively disrupt class I MHC downregulation, having no detectable effect on other functions of Nef, such as the downregulation of CD4 and CD3 surface expression, the stimulation of SIV virion infectivity, and the induction of SIV replication from T cells infected in the absence of stimulation. The resulting mutants will be useful reagents for studying the importance of class I MHC downregulation for SIV replication and AIDS pathogenesis in infected rhesus macaques. 相似文献
2.
3.
Coxsackievirus B3 proteins directionally complement each other to downregulate surface major histocompatibility complex class I
下载免费PDF全文

Picornaviruses carry a small number of proteins with diverse functions that subvert and exploit the host cell. We have previously shown that three coxsackievirus B3 (CVB3) proteins (2B, 2BC, and 3A) target the Golgi complex and inhibit protein transit. Here we investigate these effects in more detail and evaluate the distribution of major histocompatibility complex (MHC) class I molecules, which are critical mediators of the CD8(+) T-cell response. We report that concomitant with viral protein synthesis, MHC class I surface expression is rapidly downregulated during infection. However, this phenomenon may not result solely from inhibition of anterograde trafficking; we propose a new mechanism whereby the CVB3 2B and 2BC proteins upregulate the internalization of MHC class I (and possibly other surface proteins), perhaps by focusing of endocytic vesicles at the Golgi complex. Thus, our findings indicate that CVB3 carries at least three nonstructural proteins that directionally complement one another; 3A disrupts the Golgi complex to inhibit anterograde transport, while 2B and/or 2BC upregulates endocytosis, rapidly removing proteins from the cell surface. Taken together, these effects may render CVB3-infected cells invisible to CD8(+) T cells and untouchable by many antiviral effector molecules. This has important implications for immune evasion by CVB3. 相似文献
4.
Human immunodeficiency virus type 1 Nef provides immune evasion by decreasing the expression of major histocompatibility complex class I (MHC-I) at the surfaces of infected cells. The endosomal clathrin adaptor protein complex AP-1 is a key cellular cofactor for this activity, and it is recruited to the MHC-I cytoplasmic domain (CD) in the presence of Nef by an uncharacterized mechanism. To determine the molecular basis of this recruitment, we used an MHC-I CD-Nef fusion protein to represent the MHC-I CD/Nef complex during protein interaction assays. The MHC-I CD had no intrinsic ability to bind AP-1, but it conferred binding activity when fused to Nef. This activity was independent of the canonical leucine-based AP-binding motif in Nef; it required residue Y320 in the MHC-I CD and residues E62-65 and P78 in Nef, and it involved the mu but not the gamma/sigma subunits of AP-1. The impaired binding of mutants encoding substitutions of E62-65 or P78 in Nef was rescued by replacing the Y320SQA sequence in the MHC-I CD with YSQL, suggesting that Nef allows the YSQA sequence to act as if it were a canonical mu-binding motif. These data identify the mu subunit of AP-1 (mu1) as the key target of the MHC-I CD/Nef complex, and they indicate that both Y320 in the MHC-I CD and E62-65 in Nef interact directly with mu1. The data support a cooperative binding model in which Nef functions as a clathrin-associated sorting protein that allows recognition of an incomplete, tyrosine-based mu-binding signal in the MHC-I CD by AP-1. 相似文献
5.
A commonly recognized simian immunodeficiency virus Nef epitope presented to cytotoxic T lymphocytes of Indian-origin rhesus monkeys by the prevalent major histocompatibility complex class I allele Mamu-A*02
下载免费PDF全文

Robinson S Charini WA Newberg MH Kuroda MJ Lord CI Letvin NL 《Journal of virology》2001,75(21):10179-10186
The ability to monitor vaccine-elicited CD8(+) cytotoxic T-lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys has been limited by our knowledge of viral epitopes predictably presented to those lymphocytes by common rhesus monkey MHC class I alleles. We now define an SIV and SHIV Nef CTL epitope (YTSGPGIRY) that is presented to CD8(+) T lymphocytes by the common rhesus monkey MHC class I molecule Mamu-A*02. All seven infected Mamu-A*02(+) monkeys evaluated demonstrated this response, and peptide-stimulated interferon gamma Elispot assays indicated that the response represents a large proportion of the entire CD8(+) T-lymphocyte SIV- or SHIV-specific immune response of these animals. Knowledge of this epitope and MHC class I allele substantially increases the number of available rhesus monkeys that can be used for testing prototype HIV vaccines in this important animal model. 相似文献
6.
DNA sequence analysis of a class I gene (Q10), which maps to the Qa2,3 locus in the C57BL/10 (H-2b haplotype) mouse, reveals that it is almost identical to a cDNA clone (pH16) isolated from a SWR/J (H-2q haplotype) mouse liver cDNA library. Exon 5, in particular, has an unusual structure such that a polypeptide product is unlikely to be anchored in the cell membrane. Our findings suggest that the two sequences are derived from allelic class I genes, which are nonpolymorphic, in contrast to H-2K allelic sequences from the same mice, and they may encode liver-specific polypeptides of unknown function. Our previous studies indicate that the Q10 gene is a potential donor gene for the generation of mutations at the H-2K locus by inter-gene transfer of genetic information. Thus the lack of polymorphism in class I genes at the Q10 locus implies either that they are not recipients for such exchanges or that selective pressure prevents the accumulation of mutations in genes at this locus. 相似文献
7.
Acidification of internalized class I major histocompatibility complex antigen by T lymphoblasts 总被引:3,自引:0,他引:3
It has previously been shown that activated murine T lymphocytes express intracellular vesicles containing the class I major histocompatibility complex (MHC) antigen H-2K. Evidence has also been provided that such vesicles may be part of a cellular pathway of spontaneous H-2K antigen internalization and recycling, which is specific to T-lymphoid cells. Dual fluorescence flow cytometry has now been used to establish that H-2K antigen is acidified upon internalization in concanavalin A-stimulated but not lipopolysaccharide-stimulated murine splenocytes, thus providing further support that in T lymphoblasts this class I MHC antigen may travel intracellular routes similar to those reported for other cell surface receptors. 相似文献
8.
9.
Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking
下载免费PDF全文

Williams M Roeth JF Kasper MR Fleis RI Przybycin CG Collins KL 《Journal of virology》2002,76(23):12173-12184
Nef, an essential pathogenic determinant for human immunodeficiency virus type 1, has multiple functions that include disruption of major histocompatibility complex class I molecules (MHC-I) and CD4 and CD28 cell surface expression. The effects of Nef on MHC-I have been shown to protect infected cells from cytotoxic T-lymphocyte recognition by downmodulation of a subset of MHC-I (HLA-A and -B). The remaining HLA-C and -E molecules prevent recognition by natural killer (NK) cells, which would otherwise lyse cells expressing small amounts of MHC-I. Specific amino acid residues in the MHC-I cytoplasmic tail confer sensitivity to Nef, but their function is unknown. Here we show that purified Nef binds directly to the HLA-A2 cytoplasmic tail in vitro and that Nef forms complexes with MHC-I that can be isolated from human cells. The interaction between Nef and MHC-I appears to be weak, indicating that it may be transient or stabilized by other factors. Supporting the fact that these molecules interact in vivo, we found that Nef colocalizes with HLA-A2 molecules in a perinuclear distribution inside cells. In addition, we demonstrated that Nef fails to bind the HLA-E tail and also fails to bind HLA-A2 tails with deletions of amino acids necessary for MHC-I downmodulation. These data provide an explanation for differential downmodulation of MHC-I allotypes by Nef. In addition, they provide the first direct evidence indicating that Nef functions as an adaptor molecule able to link MHC-I to cellular trafficking proteins. 相似文献
10.
Previous studies of cattle MHC have suggested the presence of at least four classical class I loci. Analysis of haplotypes showed that any combination of one, two or three genes may be expressed, although no gene is expressed consistently. The aim of this study was to examine the evolutionary relationships among these genes and to study their phylogenetic history in Cetartiodactyl species, including cattle and their close relatives. A secondary aim was to determine whether recombination had occurred between any of the genes. MHC class I data sets were generated from published sequences or by polymerase chain reaction from cDNA. Phylogenetic analysis revealed that MHC class I sequences from Cetartiodactyl species closely related to cattle were distributed among the main cattle gene "groups", while those from more distantly related species were either scattered (sheep, deer) or clustered in a species-specific manner (sitatunga, giraffe). A comparison between gene and species trees showed a poor match, indicating that divergence of the MHC sequences had occurred independently from that of the hosts from which they were obtained. We also found two clear instances of interlocus recombination among the cattle MHC sequences. Finally, positive natural selection was documented at positions throughout the alpha 1 and 2 domains, primarily on those amino acids directly involved in peptide binding, although two positions in the alpha 3 domain, a region generally conserved in other species, were also shown to be undergoing adaptive evolution. 相似文献
11.
Fackler OT Wolf D Weber HO Laffert B D'Aloja P Schuler-Thurner B Geffin R Saksela K Geyer M Peterlin BM Schuler G Baur AS 《Current biology : CB》2001,11(16):1294-1299
In the infected host, the Nef protein of HIV/SIV is required for high viral loads and thus disease progression. Recent evidence indicates that Nef enhances replication in the T cell compartment after the virus is transmitted from dendritic cells (DC). The underlying mechanism, however, is not clear. Here, we report that a natural variability in the proline-rich motif (R71T) profoundly modulated Nef-stimulated viral replication in primary T cells of immature dendritic cell/T cell cocultures. Whereas both Nef variants (R/T-Nef) downregulated CD4, only the isoform supporting viral replication (R-Nef) efficiently interacted with signaling molecules of the T cell receptor (TCR) environment and stimulated cellular activation. Structural analysis suggested that the R to T conversion induces conformational changes, altering the flexibility of the loop containing the PxxP motif and hence its ability to bind cellular partners. Our report suggests that functionally and conformationally distinct Nef isoforms modulate HIV replication on the interaction level with the TCR-signaling environment once the virus enters the T cell compartment. 相似文献
12.
Musson JA Morton M Walker N Harper HM McNeill HV Williamson ED Robinson JH 《The Journal of biological chemistry》2006,281(36):26129-26135
We studied the mechanisms of antigen presentation of CD4 T cell epitopes of the capsular Caf1 antigen of Yersinia pestis using murine bone marrow macrophages as antigen presenting cells and T cell hybridomas specific for major histocompatibility complex (MHC) class II-restricted epitopes distributed throughout the Caf1 sequence. The data revealed diversity in the pathways used and the degrees of antigen processing required depending on the structural context of epitopes within the Caf1 molecule. Two epitopes in the carboxyl-terminal globular domain were presented by newly synthesized MHC class II after low pH-dependent lysosomal processing, whereas an epitope located in a flexible amino-terminal strand was presented by mature MHC class II independent of low pH and with no detectable requirement for proteolytic processing. A fourth epitope located between the two regions of Caf1 showed intermediate behavior. The data are consistent with progressive unfolding and cleavage of rCaf1 from the amino terminus as it traverses the endosomal pathway, the availability of epitopes determining which pool of MHC class II is preferentially loaded. The Caf1 capsular protein is a component of second generation plague vaccines and an understanding of the mechanisms and pathways of MHC class II-restricted presentation of multiple epitopes from this candidate vaccine antigen should inform the choice of delivery systems and adjuvants that target vaccines successfully to appropriate intracellular locations to induce protective immune responses against as wide a T cell repertoire as possible. 相似文献
13.
Garstka M Borchert B Al-Balushi M Praveen PV Kühl N Majoul I Duden R Springer S 《The Journal of biological chemistry》2007,282(42):30680-30690
Prior to binding to a high affinity peptide and transporting it to the cell surface, major histocompatibility complex class I molecules are retained inside the cell by retention in the endoplasmic reticulum (ER), recycling through the ER-Golgi intermediate compartment and possibly the cis-Golgi, or both. Using fluorescence microscopy and a novel in vitro COPII (ER-to-ER-Golgi intermediate compartment) vesicle formation assay, we find that in both lymphocytes and fibroblasts that lack the functional transporter associated with antigen presentation, class I molecules exit the ER and reach the cis-Golgi. Intriguingly, in wild-type T1 lymphoma cells, peptide-occupied and peptide-receptive class I molecules are simultaneously exported from ER membranes with similar efficiencies. Our results suggest that binding of high affinity peptide and exit from the ER are not coupled, that the major histocompatibility complex class I quality control compartment extends into the Golgi apparatus under standard conditions, and that peptide loading onto class I molecules may occur in post-ER compartments. 相似文献
14.
Human immunodeficiency virus type 1 Nef domains required for disruption of major histocompatibility complex class I trafficking are also necessary for coprecipitation of Nef with HLA-A2
下载免费PDF全文

Human immunodeficiency virus type 1 (HIV-1) Nef is a critical protein that is necessary for HIV pathogenesis. Its roles include the disruption of major histocompatibility complex class I (MHC-I) and CD4 trafficking to promote immune evasion and viral spread. Mutational analyses have revealed that separate domains of Nef are required to affect these two molecules. To further elucidate how Nef disrupts MHC-I trafficking in T cells, we examined the role of protein domains that are required for this function (N-terminal alpha helix, polyproline, acidic, and oligomerization domains). We found that each of these regions was required for Nef to disrupt the transport of HLA-A2 to the cell surface and for Nef to coprecipitate with HLA-A2. 相似文献
15.
Class I molecules of the major histocompatibility complex (MHC) bind peptides derived from cytoplasmic proteins. Comparison of over 100 such peptides reveals the importance of the carboxy-terminal residue in selective binding. Recent evidence implicates the proteases and transporters of the processing pathway in providing peptides with the correct residues at the carboxyl terminus. 相似文献
16.
The Nef protein is an important HIV virulence factor that promotes the degradation of host proteins to augment virus production and facilitate immune evasion. The best-characterized targets of Nef are major histocompatibility complex class I (MHC-I) and CD4, but Nef also has been reported to target several other proteins, including CD8β, CD28, CD80, CD86, and CD1d. To compare and contrast the effects of Nef on each protein, we constructed a panel of chimeric proteins in which the extracellular and transmembrane regions of the MHC-I allele HLA-A2 were fused to the cytoplasmic tails of CD4, CD28, CD8β, CD80, CD86, and CD1d. We found that Nef coprecipitated with and disrupted the expression of molecules with cytoplasmic tails from MHC-I HLA-A2, CD4, CD8β, and CD28, but Nef did not bind to or alter the expression of molecules with cytoplasmic tails from CD80, CD86, and CD1d. In addition, we used short interfering RNA (siRNA) knockdown and coprecipitation experiments to implicate AP-1 as a cellular cofactor for Nef in the downmodulation of both CD28 and CD8β. The interaction with AP-1 required for CD28 and CD8β differed from the AP-1 interaction required for MHC-I downmodulation in that it was mediated through the dileucine motif within Nef (LL(164,165)AA) and did not require the tyrosine binding pocket of the AP-1 μ subunit. In addition, we demonstrate a requirement for β-COP as a cellular cofactor for Nef that was necessary for the degradation of targeted molecules HLA-A2, CD4, and CD8. These studies provide important new information on the similarities and differences with which Nef affects intracellular trafficking and help focus future research on the best potential pharmaceutical targets. 相似文献
17.
Atkins KM Thomas L Youker RT Harriff MJ Pissani F You H Thomas G 《The Journal of biological chemistry》2008,283(17):11772-11784
Human immunodeficiency virus, type 1, negative factor (Nef) initiates down-regulation of cell-surface major histocompatibility complex-I (MHC-I) by assembling an Src family kinase (SFK)-ZAP70/Syk-phosphoinositide 3-kinase (PI3K) cascade through the sequential actions of two sites, Nef EEEE(65) and PXXP(75). The internalized MHC-I molecules are then sequestered in endosomal compartments by a process requiring Nef Met(20). How Nef assembles the multikinase cascade to trigger the MHC-I down-regulation pathway is unknown. Here we report that EEEE(65)-dependent binding to the sorting protein PACS-2 targets Nef to the paranuclear region, enabling PXXP(75) to bind and activate a trans-Golgi network (TGN)-localized SFK. This SFK then phosphorylates ZAP-70 to recruit class I PI3K by interaction with the p85 C-terminal Src homology 2 domain. Using splenocytes and embryonic fibroblasts from PACS-2(-/-) mice, we confirm genetically that Nef requires PACS-2 to localize to the paranuclear region and assemble the multikinase cascade. Moreover, genetic loss of PACS-2 or inhibition of class I PI3K prevents Nef-mediated MHC-I down-regulation, demonstrating that short interfering RNA knockdown of PACS-2 phenocopies the gene knock-out. This PACS-2-dependent targeting pathway is not restricted to Nef, because PACS-2 is also required for trafficking of an endocytosed cation-independent mannose 6-phosphate receptor reporter from early endosomes to the TGN. Together, these results demonstrate PACS-2 is required for Nef action and sorting of itinerant membrane cargo in the TGN/endosomal system. 相似文献
18.
A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane 总被引:6,自引:0,他引:6
Caplan S Naslavsky N Hartnell LM Lodge R Polishchuk RS Donaldson JG Bonifacino JS 《The EMBO journal》2002,21(11):2557-2567
The Eps15 homology (EH) domain-containing protein, EHD1, has recently been ascribed a role in the recycling of receptors internalized by clathrin-mediated endocytosis. A subset of plasma membrane proteins can undergo internalization by a clathrin-independent pathway regulated by the small GTP-binding protein ADP-ribosylation factor 6 (Arf6). Here, we report that endogenous EHD proteins, as well as transgenic tagged EHD1, are associated with long, membrane-bound tubules containing Arf6. EHD1 appears to induce tubule formation, which requires nucleotide cycling on Arf6 and intact microtubules. Mutations in the N-terminal P-loop domain or deletion of the C-terminal EH domain of EHD1 prevent association of EHD1 with tubules or induction of tubule formation. The EHD1 tubules contain internalized major histocompatibility complex class I (MHC-I) molecules that normally traffic through the Arf6 pathway. Recycling assays show that overexpression of EHD1 enhances MHC-I recycling. These observations suggest an additional function of EHD1 as a tubule-inducing factor in the Arf6 pathway for recycling of plasma membrane proteins internalized by clathrin-independent endocytosis. 相似文献
19.
Stewart Cooper Erin J. Adams R. Spencer Wells Christopher M. Walker P. Parham 《Immunogenetics》1998,47(3):212-217
Little is known regarding the rates at which natural selection can modify or retain antigen presenting alleles at the major histocompatibility complex (MHC). Discovery of identical [1101 base pairs (bp)] coding regions at the MHC class I C locus in Pan troglodytes and Pan paniscus, chimpanzee species that diverged ∼2.3 million years ago, now indicates that a class I allotype can survive for at least this period. Remarkable conservation was also reflected in the (1799 bp) introns where a maximum of only six substitutions distinguished five alleles (three from P. troglodytes and two from P. paniscus) that encoded the identical heavy chain allotype. Analysis of a more distantly related human allele, HLA-Cw * 0702, corroborated that intron variation was non-uniform along the gene. Thus we provide a clear reference frame for the lifetime of an MHC class I allotype, a direct estimate of allelic substitution rates, and evidence for an unusual evolution of MHC class I introns. Received: 13 August 1997 相似文献
20.
To evade the anti-human immunodeficiency virus (HIV) immune response, the HIV Nef protein disrupts major histocompatibility complex class I (MHC-I) trafficking by recruiting the clathrin adaptor protein 1 (AP-1) to the MHC-I cytoplasmic tail. Under normal conditions AP-1 binds dileucine and tyrosine signals (YXX phi motifs) via physically separate binding sites. In the case of the Nef-MHC-I complex, a tyrosine in the human leukocyte antigen (HLA)-A2 cytoplasmic tail ((320)YSQA) and a methionine in Nef (Met(20)) are absolutely required for AP-1 binding. Also present in Nef is a dileucine motif, which does not normally affect MHC-I trafficking and is not needed to recruit AP-1 to the Nef-MHC-I-complex. However, evidence is presented here that this dileucine motif can be activated by fusing Nef to the HLA-A2 tail in cis. Thus, the inability of this motif to function in trans likely results from a structural change that occurs when Nef binds to the MHC-I cytoplasmic tail. The physiologically relevant tyrosine-dependent recruitment of AP-1 to MHC-I, which occurs whether Nef is present in cis or trans, was stabilized by the acidic and polyproline domains within Nef. Additionally, amino acids Ala(324) and Asp(327) in the cytoplasmic tails of HLA-A and (but not HLA-C and HLA-E) molecules also stabilized AP-1 binding. Finally, mutation of the tyrosine binding pocket in the mu subunit of AP-1 created a dominant negative inhibitor of Nef-induced down-modulation of HLA-A2 that disrupted binding of wild type AP-1 to the Nef-MHC-I complex. Thus, these data provide evidence that Nef binding to the MHC-I cytoplasmic tail stabilizes the interaction of a tyrosine in the MHC-I cytoplasmic tail with the natural tyrosine binding pocket in AP-1. 相似文献