首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus type 1 Nef provides immune evasion by decreasing the expression of major histocompatibility complex class I (MHC-I) at the surfaces of infected cells. The endosomal clathrin adaptor protein complex AP-1 is a key cellular cofactor for this activity, and it is recruited to the MHC-I cytoplasmic domain (CD) in the presence of Nef by an uncharacterized mechanism. To determine the molecular basis of this recruitment, we used an MHC-I CD-Nef fusion protein to represent the MHC-I CD/Nef complex during protein interaction assays. The MHC-I CD had no intrinsic ability to bind AP-1, but it conferred binding activity when fused to Nef. This activity was independent of the canonical leucine-based AP-binding motif in Nef; it required residue Y320 in the MHC-I CD and residues E62-65 and P78 in Nef, and it involved the mu but not the gamma/sigma subunits of AP-1. The impaired binding of mutants encoding substitutions of E62-65 or P78 in Nef was rescued by replacing the Y320SQA sequence in the MHC-I CD with YSQL, suggesting that Nef allows the YSQA sequence to act as if it were a canonical mu-binding motif. These data identify the mu subunit of AP-1 (mu1) as the key target of the MHC-I CD/Nef complex, and they indicate that both Y320 in the MHC-I CD and E62-65 in Nef interact directly with mu1. The data support a cooperative binding model in which Nef functions as a clathrin-associated sorting protein that allows recognition of an incomplete, tyrosine-based mu-binding signal in the MHC-I CD by AP-1.  相似文献   

2.
HIV-1 and SIV Nef proteins downregulate cell surface CD4 and MHC class I (MHC-I) molecules of infected cells, which are necessary for efficient viral replication and pathogenicity. We previously reported that K144 in HIV-1 Nef is di-ubiquitinated, and K144R substitution impairs Nef-mediated CD4 downregulation. In this report, we extend the role of ubiquitination at this lysine residue from Nef-mediated CD4 downregulation to Nef-mediated MHC-I downregulation and from HIV Nef to SIV Nef. All HIV-1 Nef mutants that contain K144R substitution are inactive in MHC-I downregulation. Tested MHC-I alleles include HLA-ABC endogenously expressed and HLA-A2 exogenously expressed in Jurkat T cells. CD4 downregulation by SIV Nef involves K176 that aligns with K144 in HIV-1 Nef, as well as an N-terminal tyrosine motif Y28Y39 not present in HIV-1 Nef. Dual mutation at K176 and Y28Y39 completely impaired SIV Nef-mediated CD4 and MHC-I downregulation, whereas a single mutation at K176 or Y28Y39 did not. The involvement of tyrosine motif in SIV Nef-mediated CD4 and MHC-I downregulation prompted us to investigate a putative tyrosine motif (Y202Y/F203) in HIV-1 Nef that is conserved among HIV-1 species. Single mutation at the tyrosine motif Y202F203 in HIV-1 Nef (NA7) greatly impaired Nef-mediated CD4 downregulation, which is similar to what we observed previously with the single mutation at lysine K144. Thus, our study demonstrated that Nef-mediated receptor endocytosis involves the ubiquitination motif and tyrosine motif.  相似文献   

3.
To evade the anti-human immunodeficiency virus (HIV) immune response, the HIV Nef protein disrupts major histocompatibility complex class I (MHC-I) trafficking by recruiting the clathrin adaptor protein 1 (AP-1) to the MHC-I cytoplasmic tail. Under normal conditions AP-1 binds dileucine and tyrosine signals (YXX phi motifs) via physically separate binding sites. In the case of the Nef-MHC-I complex, a tyrosine in the human leukocyte antigen (HLA)-A2 cytoplasmic tail ((320)YSQA) and a methionine in Nef (Met(20)) are absolutely required for AP-1 binding. Also present in Nef is a dileucine motif, which does not normally affect MHC-I trafficking and is not needed to recruit AP-1 to the Nef-MHC-I-complex. However, evidence is presented here that this dileucine motif can be activated by fusing Nef to the HLA-A2 tail in cis. Thus, the inability of this motif to function in trans likely results from a structural change that occurs when Nef binds to the MHC-I cytoplasmic tail. The physiologically relevant tyrosine-dependent recruitment of AP-1 to MHC-I, which occurs whether Nef is present in cis or trans, was stabilized by the acidic and polyproline domains within Nef. Additionally, amino acids Ala(324) and Asp(327) in the cytoplasmic tails of HLA-A and (but not HLA-C and HLA-E) molecules also stabilized AP-1 binding. Finally, mutation of the tyrosine binding pocket in the mu subunit of AP-1 created a dominant negative inhibitor of Nef-induced down-modulation of HLA-A2 that disrupted binding of wild type AP-1 to the Nef-MHC-I complex. Thus, these data provide evidence that Nef binding to the MHC-I cytoplasmic tail stabilizes the interaction of a tyrosine in the MHC-I cytoplasmic tail with the natural tyrosine binding pocket in AP-1.  相似文献   

4.

Background

The down-regulation of the major histocompatibility complex class I (MHC-I) from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD) of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1). The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxφ, which mediates binding to the medium (μ) subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the μ subunit of AP-1 (μ1) as if it contained a Yxxφmotif.

Methods and Findings

Here, we show that a direct interaction between the MHC-I CD/Nef and μ1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of μ1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and μ1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on μ1 for Yxxφ motifs were required for a robust interaction.

Conclusions

These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the μ subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in μ1 for interaction with MHC-I CD/Nef.  相似文献   

5.
HIV-1-infected cells are partially resistant to anti-HIV cytotoxic T lymphocytes (CTLs) due to the effects of the HIV Nef protein on antigen presentation by major histocompatibility complex class I (MHC-I), and evidence has been accumulating that this function of Nef is important in vivo. HIV Nef disrupts the normal expression of MHC-I by stabilizing a protein-protein interaction between the clathrin adaptor protein AP-1 and the MHC-I cytoplasmic tail. There is also evidence that Nef activates a phosphatidylinositol 3 kinase (PI3K)-dependent GTPase, ADP ribosylation factor 6 (ARF-6), to stimulate MHC-I internalization. However, the relative importance of these two pathways is unclear. Here we report that a GTPase required for AP-1 activity (ARF-1) was needed for Nef to disrupt MHC-I surface levels, whereas no significant requirement for ARF-6 was observed in Nef-expressing T cell lines and in HIV-infected primary T cells. An ARF-1 inhibitor blocked the ability of Nef to recruit AP-1 to the MHC-I cytoplasmic tail, and a dominant active ARF-1 mutant stabilized the Nef-MHC-I-AP-1 complex. These data support a model in which Nef and ARF-1 stabilize an interaction between MHC-I and AP-1 to disrupt the presentation of HIV-1 epitopes to CTLs.  相似文献   

6.
To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the mu1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef-MHC-I complex is an important step required for inhibition of antigen presentation by HIV.  相似文献   

7.
HIV-1 Nef, which is required for the efficient onset of AIDS, enhances viral replication and infectivity by exerting multiple effects on infected cells. Nef downregulates cell-surface MHC-I molecules by an uncharacterized PI3K pathway requiring the actions of two Nef motifs-EEEE(65) and PXXP(75). We report that the Nef EEEE(65) targeting motif enables Nef PXXP(75) to bind and activate a trans-Golgi network-localized Src family tyrosine kinase (SFK). The Nef/SFK complex then recruits and phosphorylates the tyrosine kinase ZAP-70, which binds class I PI3K to trigger MHC-I downregulation in primary CD4+ T cells. In promonocytic cells, Nef/SFK recruits the ZAP-70 homolog Syk to downregulate MHC-I, implicating this PI3K pathway in multiple HIV-1 reservoirs. Isoform-specific PI3K inhibitors repress MHC-I downregulation, identifying them as potential therapeutic agents to combat HIV-1. The discovery of this Nef-SFK-ZAP-70/Syk-PI3K signaling pathway explains the hierarchal role of the Nef motifs in effecting immunoevasion.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef directs virus escape from immune surveillance by subverting host cell intracellular signaling and membrane traffic to down-regulate cell-surface major histocompatibility complex class I (MHC-I). The interaction of Nef with the sorting proteins PACS-1 and PACS-2 mediates key signaling and trafficking steps required for Nef-mediated MHC-I down-regulation. Little is known, however, about the molecular basis underlying the Nef-PACS interaction. Here we identify the sites on Nef and the PACS proteins required for their interaction and describe the consequences of disrupting this interaction for Nef action. A previously unidentified cargo subsite on PACS-1 and PACS-2 interacted with a bipartite site on Nef formed by the EEEE(65) acidic cluster on the N-terminal domain and W(113) in the core domain. Mutation of these sites prevented the interaction between Nef and the PACS proteins on Rab5 (PACS-2 and PACS-1)- or Rab7 (PACS-1)-positive endosomes as determined by bimolecular fluorescence complementation and caused a Nef mutant defective in PACS binding to localize to distorted endosomal compartments. Consequently, disruption of the Nef-PACS interaction repressed Nef-induced MHC-I down-regulation in peripheral blood mononuclear cells. Our results provide insight into the molecular basis of Nef action and suggest new strategies to combat HIV-1.  相似文献   

9.
Major-histocompatibility-complex (MHC) proteins are used to display, on the surface of a cell, peptides derived from foreign material - such as a virus - that is infecting that cell. Cytotoxic T lymphocytes then recognize and kill the infected cell. The HIV-1 Nef protein downregulates the cell-surface expression of class I MHC proteins, and probably thereby promotes immune evasion by HIV-1. In the presence of Nef, class I MHC molecules are relocalized from the cell surface to the trans-Golgi network (TGN) through as-yet-unknown mechanisms. Here we show that Nef-induced downregulation of MHC-I expression and MHC-I targeting to the TGN require the binding of Nef to PACS-1, a molecule that controls the TGN localization of the cellular protein furin. This interaction is dependent on Nef's cluster of acidic amino acids. A chimaeric integral membrane protein containing Nef as its cytoplasmic domain localizes to the TGN after internalization, in an acidic-cluster- and PACS-1-dependent manner. These results support a model in which Nef relocalizes MHC-I by acting as a connector between MHC-I's cytoplasmic tail and the PACS-1-dependent protein-sorting pathway.  相似文献   

10.
To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7(+) vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, beta-COP. Moreover, we demonstrate that Nef contains two separable beta-COP binding sites. One site, an arginine (RXR) motif in the N-terminal alpha helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.  相似文献   

11.
Lewis MJ  Lee P  Ng HL  Yang OO 《Journal of virology》2012,86(13):7126-7135
Human immunodeficiency virus type 1 (HIV-1) Nef downregulates major histocompatibility complex class I (MHC-I), impairing the clearance of infected cells by CD8(+) cytotoxic T lymphocytes (CTLs). While sequence motifs mediating this function have been determined by in vitro mutagenesis studies of laboratory-adapted HIV-1 molecular clones, it is unclear whether the highly variable Nef sequences of primary isolates in vivo rely on the same sequence motifs. To address this issue, nef quasispecies from nine chronically HIV-1-infected persons were examined for sequence evolution and altered MHC-I downregulatory function under Gag-specific CTL immune pressure in vitro. This selection resulted in decreased nef diversity and strong purifying selection. Site-by-site analysis identified 13 codons undergoing purifying selection and 1 undergoing positive selection. Of the former, only 6 have been reported to have roles in Nef function, including 4 associated with MHC-I downregulation. Functional testing of naturally occurring in vivo polymorphisms at the 7 sites with no previously known functional role revealed 3 mutations (A84D, Y135F, and G140R) that ablated MHC-I downregulation and 3 (N52A, S169I, and V180E) that partially impaired MHC-I downregulation. Globally, the CTL pressure in vitro selected functional Nef from the in vivo quasispecies mixtures that predominately lacked MHC-I downregulatory function at the baseline. Overall, these data demonstrate that CTL pressure exerts a strong purifying selective pressure for MHC-I downregulation and identifies novel functional motifs present in Nef sequences in vivo.  相似文献   

12.
The Nef protein is an important HIV virulence factor that promotes the degradation of host proteins to augment virus production and facilitate immune evasion. The best-characterized targets of Nef are major histocompatibility complex class I (MHC-I) and CD4, but Nef also has been reported to target several other proteins, including CD8β, CD28, CD80, CD86, and CD1d. To compare and contrast the effects of Nef on each protein, we constructed a panel of chimeric proteins in which the extracellular and transmembrane regions of the MHC-I allele HLA-A2 were fused to the cytoplasmic tails of CD4, CD28, CD8β, CD80, CD86, and CD1d. We found that Nef coprecipitated with and disrupted the expression of molecules with cytoplasmic tails from MHC-I HLA-A2, CD4, CD8β, and CD28, but Nef did not bind to or alter the expression of molecules with cytoplasmic tails from CD80, CD86, and CD1d. In addition, we used short interfering RNA (siRNA) knockdown and coprecipitation experiments to implicate AP-1 as a cellular cofactor for Nef in the downmodulation of both CD28 and CD8β. The interaction with AP-1 required for CD28 and CD8β differed from the AP-1 interaction required for MHC-I downmodulation in that it was mediated through the dileucine motif within Nef (LL(164,165)AA) and did not require the tyrosine binding pocket of the AP-1 μ subunit. In addition, we demonstrate a requirement for β-COP as a cellular cofactor for Nef that was necessary for the degradation of targeted molecules HLA-A2, CD4, and CD8. These studies provide important new information on the similarities and differences with which Nef affects intracellular trafficking and help focus future research on the best potential pharmaceutical targets.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef downregulates major histocompatibility complex class I (MHC-I) from the cell surface. It has been proposed that the direct interaction of the acidic cluster (AC) of Nef, (62)EEEE(65), with the furin binding region (fbr) of PACS-1 is crucial for this Nef function. Contrary to this proposal, evidence is presented here that the four glutamates in Nef do not functionally engage the PACS-1 fbr. (i) The binding of Nef to the PACS-1 fbr in vitro is much weaker than the binding of the canonical furin AC to the PACS-1 fbr. (ii) The mutation of two of the four glutamates in Nef's AC to alanines does not alter Nef's ability to downregulate MHC-I, and triply mutated Nefs exhibit 50% activity. (iii) The introduction of lysine into the AC has little effect on Nef function. (iv) The mutation of all four glutamates to alanine does debilitate Nef MHC-I downregulation, but this quadruple mutation also impairs the ability of Nef to regulate p21-activated protein kinase and enhance viral particle infectivity. (v) The replacement of the Nef AC with the bona fide AC from furin results in the loss of the expected regulatory properties of the furin AC. (vi) The insertion of the conformation-disrupting amino acid proline into the Nef AC does not disrupt MHC-I downregulation. Our results are consistent with an alternative model in which (62)EEEE(65) plays a stabilizing role in the formation of a ternary complex between Nef, the MHC-I cytoplasmic domain, and AP-1.  相似文献   

14.
Lentiviral Nef proteins are key factors for pathogenesis and are known to downregulate functionally important molecules, including CD4 and major histocompatibility complex class I (MHC-I), from the surfaces of infected cells. Recently, we demonstrated that Nef reduces cell surface levels of the human immunodeficiency virus type 1 (HIV-1) entry coreceptor CCR5 (N. Michel, I. Allespach, S. Venzke, O. T. Fackler, and O. T. Keppler, Curr. Biol. 15:714-723, 2005). Here, we report that Nef downregulates the second major HIV-1 coreceptor, CXCR4, from the surfaces of HIV-infected primary CD4 T lymphocytes with efficiencies comparable to those of the natural CXCR4 ligand, stromal cell-derived factor-1 alpha. Analysis of a panel of mutants of HIV-1(SF2) Nef revealed that the viral protein utilized the same signature motifs for downmodulation of CXCR4 and MHC-I, including the proline-rich motif P(73)P(76)P(79)P(82) and the acidic cluster motif E(66)E(67)E(68)E(69.) Expression of wild-type Nef, but not of specific Nef mutants, resulted in a perinuclear accumulation of the coreceptor. Remarkably, the carboxy terminus of CXCR4, which harbors the classical motifs critical for basal and ligand-induced receptor endocytosis, was dispensable for the Nef-mediated reduction of surface exposure. Functionally, the ability of Nef to simultaneously downmodulate CXCR4 and CD4 correlated with maximum-level protection of Nef-expressing target cells from fusion with cells exposing X4 HIV-1 envelopes. Furthermore, the Nef-mediated downregulation of CXCR4 alone on target T lymphocytes was sufficient to diminish cells' susceptibility to X4 HIV-1 virions at the entry step. The downregulation of chemokine coreceptors is a conserved activity of Nef to modulate infected cells, an important functional consequence of which is an enhanced resistance to HIV superinfection.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) Nef is a critical protein that is necessary for HIV pathogenesis. Its roles include the disruption of major histocompatibility complex class I (MHC-I) and CD4 trafficking to promote immune evasion and viral spread. Mutational analyses have revealed that separate domains of Nef are required to affect these two molecules. To further elucidate how Nef disrupts MHC-I trafficking in T cells, we examined the role of protein domains that are required for this function (N-terminal alpha helix, polyproline, acidic, and oligomerization domains). We found that each of these regions was required for Nef to disrupt the transport of HLA-A2 to the cell surface and for Nef to coprecipitate with HLA-A2.  相似文献   

16.
The interaction of human immunodeficiency virus type 1 (HIV-1) Nef with p21-activated kinase 2 (Pak2) has been proposed to play an important role in T-cell activation and disease progression during viral infection. However, the mechanism by which Nef activates Pak2 is poorly understood. Mutations in most Nef motifs previously reported to be required for Pak2 activation (G2, PxxP72, and RR105) also affect other Nef functions, such as CD4 or major histocompatibility complex class I (MHC-I) downregulation. To better understand Nef interactions with Pak2, we performed mutational analysis of three primary HIV-1 Nef clones that exhibited similar capacities for downregulation of CD4 and MHC-I but variable abilities to associate with activated Pak2. Our results demonstrate that Nef amino acids at positions 85, 89, 187, 188, and 191 (L, H, S, R, and F in the clade B consensus, respectively) are critical for Pak2 association. Mutation of these Nef residues dramatically altered association with Pak2 without affecting Nef expression levels or CD4 and MHC-I downregulation. Furthermore, compensation occurred at positions 89 and 191 when both amino acids were substituted. Since residues 85, 89, 187, 188, and 191 cluster on the surface of the Nef core domain in a region distinct from the dimerization and SH3-binding domains, we propose that these Nef residues form part of a unique binding surface specifically involved in association with Pak2. This binding surface includes exposed and recessed hydrophobic residues and may participate in an as-yet-unidentified protein-protein interaction to facilitate Pak2 activation.  相似文献   

17.
Nef-mediated down-regulation of MHC class I (MHC-I) molecules on HIV-1-infected cells has been proposed to enhance viral persistence through evasion of host CTLs. This conclusion is based largely on demonstrations that Nef from laboratory HIV-1 strains reduces the susceptibility of infected cells to CTL killing in vitro. However, the function and role of Nef-mediated MHC-I down-regulation in vivo have not been well described. To approach this issue, nef quasispecies from chronically HIV-1-infected individuals were cloned into recombinant reporter viruses and tested for their ability to down-regulate MHC-I molecules from the surface of infected cells. The level of function varied widely between individuals, and although comparison to the immunologic parameters of blood CD4(+) T lymphocyte count and breadth of the HIV-1-specific CTL response showed positive correlations, no significant correlation was found in comparison to plasma viremia. The ability of in vivo-derived Nef to down-regulate MHC-I predicted the resistance of HIV-1 to suppression by CTL. Taken together, these data demonstrate the functionality of Nef to down-regulate MHC-I in vivo during stable chronic infection, and suggest that this function is maintained by the need of HIV-1 to cope with the antiviral CTL response.  相似文献   

18.
HIV-1 Nef triggers down-regulation of cell-surface MHC-I by assembling a Src family kinase (SFK)-ZAP-70/Syk-PI3K cascade. Here, we report that chemical disruption of the Nef-SFK interaction with the small molecule inhibitor 2c blocks assembly of the multi-kinase complex and represses HIV-1–mediated MHC-I down-regulation in primary CD4+ T-cells. 2c did not interfere with the PACS-2–dependent trafficking of Nef required for the Nef-SFK interaction or the AP-1 and PACS-1–dependent sequestering of internalized MHC-I, suggesting the inhibitor specifically interfered with the Nef-SFK interaction required for triggering MHC-I down-regulation. Transport studies revealed Nef directs a highly regulated program to down-regulate MHC-I in primary CD4+ T-cells. During the first two days after infection, Nef assembles the 2c-sensitive multi-kinase complex to trigger down-regulation of cell-surface MHC-I. By three days postinfection Nef switches to a stoichiometric mode that prevents surface delivery of newly synthesized MHC-I. Pharmacologic inhibition of the multi-kinase cascade prevents the Nef-dependent block in MHC-I transport, suggesting the signaling and stoichiometric modes are causally linked. Together, these studies resolve the seemingly controversial models that describe Nef-induced MHC-I down-regulation and provide new insights into the mechanism of Nef action.  相似文献   

19.
To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121–137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells. Since the Nef-GPG motif was dispensable for CD4-downregulation in HeLa-CD4 cells, Nef/AP-1 interaction and Nef-dependent effects on Tf-R trafficking, the observed effects on CD4 downregulation cannot be attributed to structure constraints or to alterations on general protein trafficking. Besides, we found that the GPG-motif was also required for Nef-dependent inhibition of ring actin re-organization upon TCR triggering and MHCI downregulation, suggesting that the GPG-motif could actively cooperate with the Nef PxxP motif for these HIV-1 Nef-related effects. Finally, we observed that the Nef-GPG motif was required for optimal infectivity of those viruses produced in T-cells. According to these findings, we propose the conserved GPG-motif in HIV-1 Nef as functional region required for HIV-1 infectivity and therefore with a potential interest for the interference of Nef activity during HIV-1 infection.  相似文献   

20.
A Greenway  A Azad  J Mills    D McPhee 《Journal of virology》1996,70(10):6701-6708
It is now well established that human immunodeficiency virus type I (HIV-1) Nef contributes substantially to disease pathogenesis by augmenting virus replication and markedly perturbing T-cell function. The effect of Nef on host cell activation could be explained in part by its interaction with specific cellular proteins involved in signal transduction, including at least a member of the src family kinase, Lck, and the serine/threonine kinase, mitogen-activated protein kinase (MAPK). Recombinant Nef directly interacted with purified Lck and MAPK in coprecipitation experiments and binding assays. A proline-rich repeat sequence [(Pxx)4] in Nef occurring between amino acid residues 69 to 78 is highly conserved and bears strong resemblance to a defined consensus sequence identified as an SH3 binding domain present in several proteins which can interact with the SH3 domain of various signalling and cytoskeletal proteins. Binding and coprecipitation assays with short synthetic peptides corresponding to the proline-rich repeat sequence [(Pxx)4] of Nef and the SH2, SH3, or SH2 and SH3 domains of Lck revealed that the interaction between these two proteins is at least in part mediated by the proline repeat sequence of Nef and the SH3 domain of Lck. In addition to direct binding to full-length Nef, MAPK was also shown to bind the same proline repeat motif. Nef protein significantly decreased the in vitro kinase activity of Lck and MAPK. Inhibition of key members of signalling cascades, including those emanating from the T-cell receptor, by the HIV-1 Nef protein undoubtedly alters the ability of the infected T cell to respond to antigens or cytokines, facilitating HIV-1 replication and contributing to HIV-1-induced disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号