首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic regulatory network inference is critically important for revealing fundamental cellular processes, investigating gene functions, and understanding their relations. The availability of time series gene expression data makes it possible to investigate the gene activities of whole genomes, rather than those of only a pair of genes or among several genes. However, current computational methods do not sufficiently consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO) approach to infer genetic regulatory networks from time series gene expression data. Under this framework, gene interaction is explained through a connection weight matrix. Based on the fact that the measured time points are limited and the assumption that the genetic networks are usually sparsely connected, we present a PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine the network parameters. Our approach has been applied to both synthetic and real data sets. The results demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of the gene expression time series and revealing potential regulatory interactions between genes.  相似文献   

3.
Predicting the biological function of all the genes of an organism is one of the fundamental goals of computational system biology. In the last decade, high-throughput experimental methods for studying the functional interactions between gene products (GPs) have been combined with computational approaches based on Bayesian networks for data integration. The result of these computational approaches is an interaction network with weighted links representing connectivity likelihood between two functionally related GPs. The weighted network generated by these computational approaches can be used to predict annotations for functionally uncharacterized GPs. Here we introduce Weighted Network Predictor (WNP), a novel algorithm for function prediction of biologically uncharacterized GPs. Tests conducted on simulated data show that WNP outperforms other 5 state-of-the-art methods in terms of both specificity and sensitivity and that it is able to better exploit and propagate the functional and topological information of the network. We apply our method to Saccharomyces cerevisiae yeast and Arabidopsis thaliana networks and we predict Gene Ontology function for about 500 and 10000 uncharacterized GPs respectively.  相似文献   

4.
Using Bayesian networks to analyze expression data.   总被引:44,自引:0,他引:44  
  相似文献   

5.
6.
Zhang S  Jin G  Zhang XS  Chen L 《Proteomics》2007,7(16):2856-2869
With the increasingly accumulated data from high-throughput technologies, study on biomolecular networks has become one of key focuses in systems biology and bioinformatics. In particular, various types of molecular networks (e.g., protein-protein interaction (PPI) network; gene regulatory network (GRN); metabolic network (MN); gene coexpression network (GCEN)) have been extensively investigated, and those studies demonstrate great potentials to discover basic functions and to reveal essential mechanisms for various biological phenomena, by understanding biological systems not at individual component level but at a system-wide level. Recent studies on networks have created very prolific researches on many aspects of living organisms. In this paper, we aim to review the recent developments on topics related to molecular networks in a comprehensive manner, with the special emphasis on the computational aspect. The contents of the survey cover global topological properties and local structural characteristics, network motifs, network comparison and query, detection of functional modules and network motifs, function prediction from network analysis, inferring molecular networks from biological data as well as representative databases and software tools.  相似文献   

7.
MOTIVATION: Estimating the network of regulative interactions between genes from gene expression measurements is a major challenge. Recently, we have shown that for gene networks of up to around 35 genes, optimal network models can be computed. However, even optimal gene network models will in general contain false edges, since the expression data will not unambiguously point to a single network. RESULTS: In order to overcome this problem, we present a computational method to enumerate the most likely m networks and to extract a widely common subgraph (denoted as gene network motif) from these. We apply the method to bacterial gene expression data and extensively compare estimation results to knowledge. Our results reveal that gene network motifs are in significantly better agreement to biological knowledge than optimal network models. We also confirm this observation in a series of estimations using synthetic microarray data and compare estimations by our method with previous estimations for yeast. Furthermore, we use our method to estimate similarities and differences of the gene networks that regulate tryptophan metabolism in two related species and thereby demonstrate the analysis of gene network evolution. AVAILABILITY: Commercial license negotiable with Gene Networks Inc. (cherkis@gene-networks.com) CONTACT: sascha-ott@gmx.net  相似文献   

8.
Background: In network biology researchers generate biomolecular networks with candidate genes or proteins experimentally-derived from high-throughput data and known biomolecular associations. Current bioinformatics research focuses on characterizing candidate genes/proteins, or nodes, with network characteristics, e.g., betweenness centrality. However, there have been few research reports to characterize and prioritize biomolecular associations (“edges”), which can represent gene regulatory events essential to biological processes.Method: We developed Weighted In-Path Edge Ranking (WIPER), a new computational algorithm which can help evaluate all biomolecular interactions/associations (“edges”) in a network model and generate a rank order of every edge based on their in-path traversal scores and statistical significance test result. To validate whether WIPER worked as we designed, we tested the algorithm on synthetic network models.Results: Our results showed WIPER can reliably discover both critical “well traversed in-path edges”, which are statistically more traversed than normal edges, and “peripheral in-path edges”, which are less traversed than normal edges. Compared with other simple measures such as betweenness centrality, WIPER provides better biological interpretations. In the case study of analyzing postanal pig hearts gene expression, WIPER highlighted new signaling pathways suggestive of cardiomyocyte regeneration and proliferation. In the case study of Alzheimer’s disease genetic disorder association, WIPER reports SRC:APP, AR:APP, APP:FYN, and APP:NES edges (gene-gene associations) both statistically and biologically important from PubMed co-citation.Conclusion: We believe that WIPER will become an essential software tool to help biologists discover and validate essential signaling/regulatory events from high-throughput biology data in the context of biological networks.Availability: The free WIPER API is described at discovery.informatics.uab.edu/wiper/  相似文献   

9.
10.
Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology.  相似文献   

11.
12.
13.
Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated principle called guilt by association states that genes which are associated or interacting are more likely to share function. Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing their quality in encoding functional information. In this work, we show that functional information within gene networks is typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network. In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale computational analyses have typically assumed that high-performance cross-validation in a network is due to a generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode function and what information computational analyses use to extract functional meaning. We explore a number of consequences of this and find that network structure itself provides clues as to which connections are critical and that systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks.  相似文献   

14.
The paper presents a methodology for using computational neurogenetic modelling (CNGM) to bring new original insights into how genes influence the dynamics of brain neural networks. CNGM is a novel computational approach to brain neural network modelling that integrates dynamic gene networks with artificial neural network model (ANN). Interaction of genes in neurons affects the dynamics of the whole ANN model through neuronal parameters, which are no longer constant but change as a function of gene expression. Through optimization of interactions within the internal gene regulatory network (GRN), initial gene/protein expression values and ANN parameters, particular target states of the neural network behaviour can be achieved, and statistics about gene interactions can be extracted. In such a way, we have obtained an abstract GRN that contains predictions about particular gene interactions in neurons for subunit genes of AMPA, GABAA and NMDA neuro-receptors. The extent of sequence conservation for 20 subunit proteins of all these receptors was analysed using standard bioinformatics multiple alignment procedures. We have observed abundance of conserved residues but the most interesting observation has been the consistent conservation of phenylalanine (F at position 269) and leucine (L at position 353) in all 20 proteins with no mutations. We hypothesise that these regions can be the basis for mutual interactions. Existing knowledge on evolutionary linkage of their protein families and analysis at molecular level indicate that the expression of these individual subunits should be coordinated, which provides the biological justification for our optimized GRN.  相似文献   

15.
16.
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn''t make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.  相似文献   

17.
Network representations of biological systems are widespread and reconstructing unknown networks from data is a focal problem for computational biologists. For example, the series of biochemical reactions in a metabolic pathway can be represented as a network, with nodes corresponding to metabolites and edges linking reactants to products. In a different context, regulatory relationships among genes are commonly represented as directed networks with edges pointing from influential genes to their targets. Reconstructing such networks from data is a challenging problem receiving much attention in the literature. There is a particular need for approaches tailored to time-series data and not reliant on direct intervention experiments, as the former are often more readily available. In this paper, we introduce an approach to reconstructing directed networks based on dynamic systems models. Our approach generalizes commonly used ODE models based on linear or nonlinear dynamics by extending the functional class for the functions involved from parametric to nonparametric models. Concomitantly we limit the complexity by imposing an additive structure on the estimated slope functions. Thus the submodel associated with each node is a sum of univariate functions. These univariate component functions form the basis for a novel coupling metric that we define in order to quantify the strength of proposed relationships and hence rank potential edges. We show the utility of the method by reconstructing networks using simulated data from computational models for the glycolytic pathway of Lactocaccus Lactis and a gene network regulating the pluripotency of mouse embryonic stem cells. For purposes of comparison, we also assess reconstruction performance using gene networks from the DREAM challenges. We compare our method to those that similarly rely on dynamic systems models and use the results to attempt to disentangle the distinct roles of linearity, sparsity, and derivative estimation.  相似文献   

18.
19.
A major challenge in the field of systems biology consists of predicting gene regulatory networks based on different training data. Within the DREAM4 initiative, we took part in the multifactorial sub-challenge that aimed to predict gene regulatory networks of size 100 from training data consisting of steady-state levels obtained after applying multifactorial perturbations to the original in silico network. Due to the static character of the challenge data, we tackled the problem via a sparse Gaussian Markov Random Field, which relates network topology with the covariance inverse generated by the gene measurements. As for the computations, we used the Graphical Lasso algorithm which provided a large range of candidate network topologies. The main task was to select the optimal network topology and for that, different model selection criteria were explored. The selected networks were compared with the golden standards and the results ranked using the scoring metrics applied in the challenge, giving a better insight in our submission and the way to improve it.Our approach provides an easy statistical and computational framework to infer gene regulatory networks that is suitable for large networks, even if the number of the observations (perturbations) is greater than the number of variables (genes).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号