首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of genes that affect the product accumulation phenotype of recombinant strains is an important problem in industrial strain construction and a central tenet of metabolic engineering. We have used systematic (model-based) and combinatorial (transposon-based) methods to identify gene knockout targets that increase lycopene biosynthesis in strains of Escherichia coli. We show that these two search strategies yield two distinct gene sets, which affect product synthesis either through an increase in precursor availability or through (largely unknown) kinetic or regulatory mechanisms, respectively. Exhaustive exploration of all possible combinations of the above gene sets yielded a unique set of 64 knockout strains spanning the metabolic landscape of systematic and combinatorial gene knockout targets. This included a global maximum strain exhibiting an 8.5-fold product increase over recombinant K12 wild type and a twofold increase over the engineered parental strain. These results were further validated in controlled culture conditions.  相似文献   

2.
Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the metabolic networks have made the process to identify the effects of genetic modification on the desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to the combinatorial problem in obtaining optimal gene deletion strategy. Basically, the size of a genome-scale metabolic model is usually large. As the size of the problem increases, the computation time increases exponentially. In this paper, we propose Differential Bees Flux Balance Analysis (DBFBA) with OptKnock to identify optimal gene knockout strategies for maximizing the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by improving the performance of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by hybridizing Differential Evolution (DE) algorithm into neighborhood searching strategy of BAFBA. In addition, DBFBA is integrated with OptKnock to validate the results for improving the reliability the work. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as the model organisms, DBFBA has shown a better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes compared to the methods used in previous works.  相似文献   

3.

Background

Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential.

Results

In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks.

Conclusions

The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0420-0) contains supplementary material, which is available to authorized users.  相似文献   

4.
顾阳  杨晟  姜卫红 《生物工程学报》2013,29(8):1133-1145
产溶剂梭菌是一类重要的工业微生物.通过遗传改造以优化产溶剂梭菌的发酵性能一直是溶剂制造技术研究的重要课题,但长期受限于该类菌并不完善的遗传操作工具,未见明显突破.近年来,随着TargeTron基因中断、大片段基因整合等新技术和新方法的出现,其分子遗传改造已取得较大进展.文中对产溶剂梭菌的分子遗传操作工具研究进展进行了总结,并指出了现有技术在效率及全面性方面的不足.基于此,今后应进一步优化现有的梭菌基因失活技术,如建立基于同源重组的基因删除和替换;同时也应发展新的分子操作技术,如基因组多位点共编辑、多拷贝定点和随机整合等.  相似文献   

5.
With the advent of gene knockout technology has arisen the problem of how to interpret the resulting phenotypic changes in mice lacking specific genes. This problem is especially relevant when applied to behavioral phenotypes of knockout mice, which are difficult to interpret. Of particular interest are the roles of development and compensatory changes, as well as other factors, such as the influence of the gene knockout on nearby genes, the effect of the genetic background strain, maternal behavioral influences, and pleiotrophy.  相似文献   

6.
Liu H  Han J  Liu X  Zhou J  Xiang H 《遗传学报》2011,38(6):261-269
The haloarchaea Haloferax mediterranei and Haloarcula hispanica are both polyhydroxyalkanoate producers in the domain Archaea, and they are becoming increasingly attractive for research and biotechnology due to their unique genetic and metabolic features. To accelerate their genome-level genetic and metabolic analyses, we have developed specific and highly efficient gene knockout systems for these two haloarchaea. These gene knockout systems consist of a suicide plasmid vector with the pyrF gene as the selection marker and a uracil auxotrophic haloarchaeon (ΔpyrF) as the host. For in-frame deletion of a target gene, the suicide plasmid carrying the flanking region of the target gene was transferred into the corresponding ΔpyrF host. After positive selection of the single-crossover integration recombinants (pop-in) on AS-168SY medium without uracil and counterselection of the double-crossover pyrF-excised recombinants (pop-out) with 5-fluoroorotic acid (5-FOA), the target gene knockout mutants were confirmed by PCR and Southern blot analysis. We have demonstrated the effectiveness of these systems by knocking out the crtB gene which encodes a phytoene synthase in these haloarchaea. In conclusion, these well-developed knockout systems would greatly accelerate the functional genomic research of these halophilic archaea.  相似文献   

7.
The oleaginous yeast Rhodosporidium toruloides is considered a promising candidate for production of chemicals and biofuels thanks to its ability to grow on lignocellulosic biomass, and its high production of lipids and carotenoids. However, efforts to engineer this organism are hindered by a lack of suitable genetic tools. Here we report the development of a CRISPR/Cas9 system for genome editing in R. toruloides based on a fusion 5S rRNA–tRNA promoter for guide RNA (gRNA) expression, capable of greater than 95% gene knockout for various genetic targets. Additionally, multiplexed double-gene knockout mutants were obtained using this method with an efficiency of 78%. This tool can be used to accelerate future metabolic engineering work in this yeast.  相似文献   

8.
Vilaça P  Rocha I  Rocha M 《Bio Systems》2011,103(3):435-441

Background and scope

Recently, a number of methods and tools have been proposed to allow the use of genome-scale metabolic models for the phenotype simulation and optimization of microbial strains, within the field of Metabolic Engineering (ME). One of the limitations of most of these algorithms and tools is the fact that only metabolic information is taken into account, disregarding knowledge on regulatory events.

Implementation and performances

This work proposes a novel software tool that implements methods for the phenotype simulation and optimization of microbial strains using integrated models, encompassing both metabolic and regulatory information. This tool is developed as a plug-in that runs over OptFlux, a computational platform that aims to be a reference tool for the ME community.

Availability

The plug-in is made available in the OptFlux web site (www.optflux.org) together with examples and documentation.  相似文献   

9.
10.
Escherichia coli is a favored host for rapid, scalable expression of recombinant proteins for academic, commercial, or therapeutic use. To maximize its economic advantages, however, it must be coupled with robust downstream processes. Affinity chromatography methods are unrivaled in their selectivity, easily resolving target proteins from crude lysates, but they come with a significant cost. Reported in this study are preliminary efforts to integrate downstream separation with upstream host design by evaluating co-eluting host proteins that most severely burden two different nonaffinity-based column processes. Phosphoenolpyruvate carboxykinase and peptidase D were significant contaminants during serial purification of green fluorescent protein (GFP) by hydrophobic interaction and anion exchange chromatography. Ribosomal protein L25 dominated non-target binding of polyarginine-tagged GFP on cation exchange resin. Implications for genetic knockout or site-directed mutagenesis resulting in diminished column retention are discussed for these and other identified contaminants.  相似文献   

11.
冰岛硫化叶菌是古菌研究中常用的模式菌株,为人们研究古菌复制、细胞周期以及CRISPR-Cas系统等作出了巨大贡献。冰岛硫化叶菌遗传操作体系的建立与完善对古菌学的全面深入研究起至关重要的作用。本文介绍了冰岛硫化叶菌遗传操作体系所使用的质粒载体、筛选标记和转化方法,论述了目前广泛使用的两类冰岛硫化叶菌基因敲除体系。最后提出了现有冰岛硫化叶菌基因操作体系存在的主要问题,并对其发展方向进行了展望。  相似文献   

12.
Genetic algorithms and optimization in general, enable us to probe deeper into the metabolic pathway recipe for multi-product biosynthesis. An augmented model for optimizing serine and tryptophan flux ratios simultaneously in Escherichia coli, was developed by linking the dynamic tryptophan operon model and aromatic amino acid-tryptophan biosynthesis pathways to the central carbon metabolism model. Six new kinetic parameters of the augmented model were estimated with considerations of available experimental data and other published works. Major differences between calculated and reference concentrations and fluxes were explained. Sensitivities and underlying competition among fluxes for carbon sources were consistent with intuitive expectations based on metabolic network and previous results. Biosynthesis rates of serine and tryptophan were simultaneously maximized using the augmented model via concurrent gene knockout and manipulation. The optimization results were obtained using the elitist non-dominant sorting genetic algorithm (NSGA-II) supported by pattern recognition heuristics. A range of Pareto-optimal enzyme activities regulating the amino acids biosynthesis was successfully obtained and elucidated wherever possible vis-à-vis fermentation work based on recombinant DNA technology. The predicted potential improvements in various metabolic pathway recipes using the multi-objective optimization strategy were highlighted and discussed in detail.  相似文献   

13.
So far, the extremely halophilic archaeon Haloferax volcanii has the best genetic tools among the archaea. However, the lack of an efficient gene knockout system for this organism has hampered further genetic studies. In this paper we describe the development of pyrE-based positive selection and counterselection systems to generate an efficient gene knockout system. The H. volacanii pyrE1 and pyrE2 genes were isolated, and the pyrE2 gene was shown to code for the physiological enzyme orotate phosphoribosyl transferase. A DeltapyrE2 strain was constructed and used to isolate deletion mutants by the following two steps: (i) integration of a nonreplicative plasmid carrying both the pyrE2 wild-type gene, as a selectable marker, and a cloned chromosomal DNA fragment containing a deletion in the desired gene; and (ii) excision of the integrated plasmid after selection with 5-fluoroorotic acid. Application of this gene knockout system is described.  相似文献   

14.
Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms.  相似文献   

15.
阻断集胞藻6803 PHB合成途径提高胞内NADPH含量   总被引:1,自引:1,他引:0  
解鹃  周杰  张海峰  李寅 《生物工程学报》2011,27(7):998-1004
蓝藻是探索利用太阳能生产化学品的重要微生物,但产量低限制了蓝藻化学品的工业应用。提高宿主还原力水平是提高微生物合成化学品产量的重要手段。为提高集胞藻细胞内NADPH含量,利用同源重组方法,获得敲除聚羟基丁酸酯PHB合酶编码基因phaC和phaE的集胞藻Synechocystis sp. PCC 6803突变体S.DphaC&E。PCR结果证明突变体S.DphaC&E基因组中phaC和phaE已完全被氯霉素抗性基因取代。生长曲线结果显示S.DphaC&E的生长与野生型无明显差异,说明敲除phaC和phaE对  相似文献   

16.
Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture.  相似文献   

17.
The recent expansion of genetic and genomic tools for metabolic engineering has accelerated the development of microorganisms for the industrial production of desired compounds. We have used transposable elements to identify chromosomal locations in the obligate methanotroph Methylomonas sp. strain 16a that support high-level expression of genes involved in the synthesis of the C(40) carotenoids canthaxanthin and astaxanthin. with three promoterless carotenoid transposons, five chromosomal locations-the fliCS, hsdM, ccp-3, cysH, and nirS regions-were identified. Total carotenoid synthesis increased 10- to 20-fold when the carotenoid gene clusters were inserted at these chromosomal locations compared to when the same carotenoid gene clusters were integrated at neutral locations under the control of the promoter for the gene conferring resistance to chloramphenicol. A chromosomal integration system based on sucrose lethality was used to make targeted gene deletions or site-specific integration of the carotenoid gene cluster into the Methylomonas genome without leaving genetic scars in the chromosome from the antibiotic resistance genes that are present on the integration vector. The genetic approaches described in this work demonstrate how metabolic engineering of microorganisms, including the less-studied environmental isolates, can be greatly enhanced by identifying integration sites within the chromosome of the host that permit optimal expression of the target genes.  相似文献   

18.
Commercial interest in microbial lipids is increasing due to their potential use as feedstock for biodiesel production. The supply of NADPH generated by malic enzyme (ME; NADP+-dependent; EC 1.1.1.40) has been postulated as being the rate-limiting step for fatty acid biosynthesis in oleaginous fungi, based mainly on data from the zygomycete Mucor circinelloides studies. This fungus contains five genes that code for six different ME isoforms. One of these genes, malA, codes for the isoforms III and IV, which have previously been associated with lipid accumulation. Following a strategy of targeted integration of an engineered malA gene, a stable strain overexpressing malA and showing high ME activity has been obtained, demonstrating the feasibility of this strategy to overexpress genes of biotechnological interest in M. circinelloides. This is the first report showing the integration and overexpression of a gene in Zygomycetes. Unexpectedly, the genetically modified strain showed a lipid content similar to that of a prototrophic non-overexpressing control strain, suggesting that another limiting step in the fatty acid synthesis pathway may have been revealed as a consequence of the elimination of malic enzyme-based bottleneck. Otherwise, the fact that prototrophic strains showed at least a 2.5-fold increase in lipid accumulation in comparison with leucine auxotrophic strains suggests that a wild-type leucine biosynthetic pathway is required for lipid accumulation. Moreover, increasing concentrations of leucine in culture medium increased growth of auxotrophs but failed to increase lipid content, suggesting that the leucine synthesized by the fungus is the only leucine available for lipid biosynthesis. These results support previous data postulating leucine metabolism as one of the pathways involved in the generation of the acetyl-CoA required for fatty acid biosynthesis.  相似文献   

19.
The chloroplast is an essential organelle in microalgae for conducting photosynthesis, thus enabling the photoautotrophic growth of microalgae. In addition to photosynthesis, the chloroplast is capable of various biochemical processes for the synthesis of proteins, lipids, carbohydrates, and terpenoids. Due to these attractive characteristics, there has been increasing interest in the biotechnological utilization of microalgal chloroplast as a sustainable alternative to the conventional production platforms used in industrial biotechnology. Since the first demonstration of microalgal chloroplast transformation, significant development has occurred over recent decades in the manipulation of microalgal chloroplasts through genetic engineering. In the present review, we describe the advantages of the microalgal chloroplast as a production platform for various bioproducts, including recombinant proteins and high-value metabolites, features of chloroplast genetic systems, and the development of transformation methods, which represent important factors for gene expression in the chloroplast. Furthermore, we address the expression of various recombinant proteins in the microalgal chloroplast through genetic engineering, including reporters, biopharmaceutical proteins, and industrial enzymes. Finally, we present many efforts and achievements in the production of high-value metabolites in the microalgal chloroplast through metabolic engineering. Based on these efforts and advances, the microalgal chloroplast represents an economically viable and sustainable platform for biotechnological applications in the near future.  相似文献   

20.
《Process Biochemistry》2014,49(12):2025-2029
Alkaline β-mannanase has important applications for specific industrial processes like pulp bleaching and the detergent industry. The low yield of alkaline β-mannanase produced from native microbes such as alkaliphilic Bacillus limits its applications. Pichia pastoris is the most efficient heterologous system to produce alkaline mannanase. However, the previous use of the AOX system required large amount of methanol and sophisticated operation strategy, which are undesirable in large scale production. In this study, we established a safe and simple constitutive expression process for mannanase production in P. pastoris. The mannanase gene was successfully expressed under the control of GAP promoter. Sequential optimization of the constructed strains was also performed including the copy number optimization and co-expression of chaperone genes. A two-stage feeding strategy was then applied for the finally optimized strain. After 96 h fermentation, a production level of 2980 U/mL was finally reached, illustrating the potential of the GAP constitutive expression system for industrial scale preparation of alkaline β-mannanase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号