首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
A molecular dissection of the repression circuitry of Ikaros   总被引:2,自引:0,他引:2  
Ikaros is a key regulator of the hemo-lymphoid system in which it is presumed to function by both potentiating and repressing gene expression. Repression is mediated through two independent domains at the N and C terminus of the protein, both of which can independently recruit the corepressors Mi-2beta, Sin3A, and Sin3B and the Class I histone deacetylases 1 and 2; the N-terminal domain can also associate with the corepressor CtBP. Here we describe a detailed dissection of these two domains and identify the minimal repression modules and the corepressor requirements for their activity. Based on these studies, we describe mutations in a full-length Ikaros protein that abrogate interactions with each of the identified corepressors and abolish the protein's function as a repressor. Finally, we show that, barring CtBP, the Ikaros family members Aiolos, Helios, and Eos can associate with all of the identified corepressors of Ikaros including its newly identified interactors, Class II HDACs.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
The Ikaros gene is alternately spliced to generate multiple DNA-binding and nonbinding isoforms that have been implicated as regulators of hematopoiesis, particularly in the lymphoid lineages. Although early reports of Ikaros mutant mice focused on lymphoid defects, these mice also show significant myeloid, erythroid, and stem cell defects. However, the specific Ikaros proteins expressed in these cells have not been determined. We recently described Ikaros-x (Ikx), a new Ikaros isoform that is the predominant Ikaros protein in normal human hematopoietic cells. In this study, we report that the Ikx protein is selectively expressed in human myeloid lineage cells, while Ik1 predominates in the lymphoid and erythroid lineages. Both Ik1 and Ikx proteins are expressed in early human hematopoietic cells (Lin(-)CD34(+)). Under culture conditions that promote specific lineage differentiation, Ikx is up-regulated during myeloid differentiation but down-regulated during lymphoid differentiation from human Lin(-)CD34(+) cells. We show that Ikx and other novel Ikaros splice variants identified in human studies are also expressed in murine bone marrow. In mice, as in humans, the Ikx protein is selectively expressed in the myeloid lineage. Our studies suggest that Ikaros proteins function in myeloid, as well as lymphoid, differentiation and that specific Ikaros isoforms may play a role in regulating lineage commitment decisions in mice and humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号