首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. Availability: http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.  相似文献   

2.
Despite the establishment of design principles to optimize codon choice for heterologous expression vector design, the relationship between codon sequence and final protein yield remains poorly understood. In this work, we present a computational framework for the identification of a set of mutant codon sequences for optimized heterologous protein production, which uses a codon-sequence mechanistic model of protein synthesis. Through a sensitivity analysis on the optimal steady state configuration of protein synthesis we are able to identify the set of codons, that are the most rate limiting with respect to steady state protein synthesis rate, and we replace them with synonymous codons recognized by charged tRNAs more efficient for translation, so that the resulting codon-elongation rate is higher. Repeating this procedure, we iteratively optimize the codon sequence for higher protein synthesis rate taking into account multiple constraints of various types. We determine a small set of optimized synonymous codon sequences that are very close to each other in sequence space, but they have an impact on properties such as ribosomal utilization or secondary structure. This limited number of sequences can then be offered for further experimental study. Overall, the proposed method is very valuable in understanding the effects of the different properties of mRNA sequences on the final protein yield in heterologous protein production and it can find applications in synthetic biology and biotechnology.  相似文献   

3.
4.
5.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

6.
Translation of mRNA into a polypeptide chain is a highly accurate process. Many prokaryotic and eukaryotic viruses, however, use leaky termination of translation to optimize their coding capacity. Although growing evidence indicates the occurrence of ribosomal readthrough also in higher organisms, a biological function for the resulting extended proteins has been elucidated only in very few cases. Here, we report that in human cells programmed stop codon readthrough is used to generate peroxisomal isoforms of cytosolic enzymes. We could show for NAD-dependent lactate dehydrogenase B (LDHB) and NAD-dependent malate dehydrogenase 1 (MDH1) that translational readthrough results in C-terminally extended protein variants containing a peroxisomal targeting signal 1 (PTS1). Efficient readthrough occurs at a short sequence motif consisting of a UGA termination codon followed by the dinucleotide CU. Leaky termination at this stop codon context was observed in fungi and mammals. Comparative genome analysis allowed us to identify further readthrough-derived peroxisomal isoforms of metabolic enzymes in diverse model organisms. Overall, our study highlights that a defined stop codon context can trigger efficient ribosomal readthrough to generate dually targeted protein isoforms. We speculate that beyond peroxisomal targeting stop codon readthrough may have also other important biological functions, which remain to be elucidated.  相似文献   

7.
The translation machinery recognizes codons that enter the ribosomal A site with remarkable accuracy to ensure that polypeptide synthesis proceeds with a minimum of errors. When a termination codon enters the A site of a eukaryotic ribosome, it is recognized by the release factor eRF1. It has been suggested that the recognition of translation termination signals in these organisms is not limited to a simple trinucleotide codon, but is instead recognized by an extended tetranucleotide termination signal comprised of the stop codon and the first nucleotide that follows. Interestingly, pharmacological agents such as aminoglycoside antibiotics can reduce the efficiency of translation termination by a mechanism that alters this ribosomal proofreading process. This leads to the misincorporation of an amino acid through the pairing of a near-cognate aminoacyl tRNA with the stop codon. To determine whether the sequence context surrounding a stop codon can influence aminoglycoside-mediated suppression of translation termination signals, we developed a series of readthrough constructs that contained different tetranucleotide termination signals, as well as differences in the three bases upstream and downstream of the stop codon. Our results demonstrate that the sequences surrounding a stop codon can play an important role in determining its susceptibility to suppression by aminoglycosides. Furthermore, these distal sequences were found to influence the level of suppression in remarkably distinct ways. These results suggest that the mRNA context influences the suppression of stop codons in response to subtle differences in the conformation of the ribosomal decoding site that result from aminoglycoside binding.  相似文献   

8.
9.
Gene expression is known to correlate with the degree of codon bias in many unicellular organisms. However, such a correlation is not observed in some organisms. It was demonstrated that inverted complementary repeats within coding DNA sequences (ORFs) should be considered for proper estimation of the translation efficiency because they can form secondary structures that obstruct ribosome movement. A program was developed for estimating the potential expression of ORFs in unicellular organisms on the basis of their genome sequences. The program computes the elongation efficiency index (EEI) and takes into account three key factors: codon bias, the average number of inverted complementary repeats, and the free energies of potential stem-loop structures formed by these repeats. The influence of these factors on translation was numerically estimated. Their optimal ratio was computed for each organism. EEIs of 384 unicellular organisms (351 bacteria, 28 archaea, and 5 eukaryotes) were computed using the annotated genomes available from GenBank. Five potential evolutionary strategies of translational optimization were determined in the organisms studied. A considerable difference in preferential translational strategies was observed between bacteria and archaea. Significant correlations between EEIs and gene expression levels were shown for two species (Saccharomyces cerevisiae and Helicobacter pylori), using the available microarray data. The method allows the numerical estimation of the translation efficiency of an ORF and optimization of the nucleotide composition of heterologous genes in specified unicellular organisms. The program is available at http://wwwmgs.bionet.nsc.ru/mgs/programs/eei-calculator.  相似文献   

10.
Codon bias and heterologous protein expression   总被引:40,自引:0,他引:40  
The expression of functional proteins in heterologous hosts is a cornerstone of modern biotechnology. Unfortunately, proteins are often difficult to express outside their original context. They might contain codons that are rarely used in the desired host, come from organisms that use non-canonical code or contain expression-limiting regulatory elements within their coding sequence. Improvements in the speed and cost of gene synthesis have facilitated the complete redesign of entire gene sequences to maximize the likelihood of high protein expression. Redesign strategies are discussed here, including modification of translation initiation regions, alteration of mRNA structural elements and use of different codon biases.  相似文献   

11.
Properties of mRNA leading regions that modulate protein synthesis are little known (besides effects of their secondary structure). Here I explore how coding properties of leading regions may account for their disparate efficiencies. Trinucleotides that form off frame stop codons decrease costs of ribosomal slippages during protein synthesis: protein activity (as a proxy of gene expression, and as measured in experiments using artificial variants of 5' leading sequences of beta galactosidase in Escherichia coli) increases proportionally to the number of stop motifs in any frame in the 5' leading region. This suggests that stop codons in the 5' leading region, upstream of the recognized coding sequence, terminate eventual translations that sometimes start before ribosomes reach the mRNA's recognized start codon, increasing efficiency. This hypothesis is confirmed by further analyses: mRNAs with 5' leading regions containing in the same frame a start preceding a stop codon (in any frame) produce less enzymatic activity than those with the stop preceding the start. Hence coding properties, in addition to other properties, such as the secondary structure of the 5' leading region, regulate translation. This experimentally (a) confirms that within coding regions, off frame stops increase protein synthesis efficiency by early stopping frameshifted translation; (b) suggests that this occurs for all frames also in 5' leading regions and that (c) several alternative start codons that function at different probabilities should routinely be considered for all genes in the region of the recognized initiation codon. An unknown number of short peptides might be translated from coding and non-coding regions of RNAs.  相似文献   

12.
Protein synthesis translates information from messenger RNAs into functional proteomes. Because of the finite nature of the resources required by the translational machinery, both the overall protein synthesis activity of a cell and activity on individual mRNAs are controlled by the allocation of limiting resources. Upon introduction of heterologous sequences into an organism-for example for the purposes of bioprocessing or synthetic biology-limiting resources may also become overstretched, thus negatively affecting both endogenous and heterologous gene expression. In this study, we present a mean-field model of translation in Saccharomyces cerevisiae for the investigation of two particular translational resources, namely ribosomes and aminoacylated tRNAs. We firstly use comparisons of experiments with heterologous sequences and simulations of the same conditions to calibrate our model, and then analyse the behaviour of the translational system in yeast upon introduction of different types of heterologous sequences. Our main findings are that: competition for ribosomes, rather than tRNAs, limits global translation in this organism; that tRNA aminoacylation levels exert, at most, weak control over translational activity; and that decoding speeds and codon adaptation exert strong control over local (mRNA specific) translation rates.  相似文献   

13.
We have isolated and characterized a Neurospora crassa gene homologous to the yeast CYH2 gene encoding L29, a cycloheximide sensitivity-conferring protein of the cytoplasmic ribosome. The cloned Neurospora gene was isolated by cross-hybridization to CYH2. It was sequenced from both cDNA and genomic clones. The coding region is interrupted by seven intervening sequences. Its deduced amino acid sequence shows 70% homology to that of yeast ribosomal protein L29 and 60% homology to that of mammalian ribosomal protein L27', suggesting that the protein has an important role in ribosomal function. The pattern of codon usage is highly biased, consistent with high translation efficiency. There is a single copy of this gene in N. crassa, and R. Metzenberg and coworkers have mapped its genetic location to the vicinity of the cyh-2 locus.  相似文献   

14.
In this study, we analyzed the correlation between codon usage bias and Shine–Dalgarno (SD) sequence conservation, using complete genome sequences of nine prokaryotes. For codon usage bias, we adopted the codon adaptation index (CAI), which is based on the codon usage preference of genes encoding ribosomal proteins, elongation factors, heat shock proteins, outer membrane proteins, and RNA polymerase subunit proteins. To compute SD sequence conservation, we used SD motif sequences predicted by Tompa and systematically aligned them with 5′UTR sequences. We found that there exists a clear correlation between the CAI values and SD sequence conservation in the genomes of Escherichia coli, Bacillus subtilis, Haemophilus influenzae, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum, and Methanococcus jannaschii, and no relationship is found in M. genitalium, M. pneumoniae, and Synechocystis. That is, genes with higher CAI values tend to have more conserved SD sequences than do genes with lower CAI values in these organisms. Some organisms, such as M. thermoautotrophicum, do not clearly show the correlation. The biological significance of these results is discussed in the context of the translation initiation process and translation efficiency. Received: 22 June 2000 / Accepted: 18 October 2000  相似文献   

15.
The Selective Advantage of Synonymous Codon Usage Bias in Salmonella   总被引:1,自引:0,他引:1  
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2–4.2 x 10−4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.  相似文献   

16.
The coding sequences of genes in the yeast Saccharomyces cerevisiae show a preference for 25 of the 61 possible coding triplets. The degree of this biased codon usage in each gene is positively correlated to its expression level. Highly expressed genes use these 25 major codons almost exclusively. As an experimental approach to studying biased codon usage and its possible role in modulating gene expression, systematic codon replacements were carried out in the highly expressed PGK1 gene. The expression of phosphoglycerate kinase (PGK) was studied both on a high-copy-number plasmid and as a single copy gene integrated into the chromosome. Replacing an increasing number (up to 39% of all codons) of major codons with synonymous minor ones at the 5' end of the coding sequence caused a dramatic decline of the expression level. The PGK protein levels dropped 10-fold. The steady-state mRNA levels also declined, but to a lesser extent (threefold). Our data indicate that this reduction in mRNA levels was due to destabilization caused by impaired translation elongation at the minor codons. By preventing translation of the PGK mRNAs by the introduction of a stop codon 3' and adjacent to the start codon, the steady-state mRNA levels decreased dramatically. We conclude that efficient mRNA translation is required for maintaining mRNA stability in S. cerevisiae. These findings have important implications for the study of the expression of heterologous genes in yeast cells.  相似文献   

17.
Xuhua Xia 《Genetics》2015,199(2):573-579
Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is rate limited only by initiation efficiency but that improved codon adaptation and, consequently, increased elongation efficiency have the benefit of increasing ribosomal availability for global translation. To test these hypotheses, a recent study engineered a synthetic library of 154 genes, all encoding the same protein but differing in degrees of codon adaptation, to quantify the effect of differential codon adaptation on protein production in Escherichia coli. The surprising conclusion that “codon bias did not correlate with gene expression” and that “translation initiation, not elongation, is rate-limiting for gene expression” contradicts the conclusion reached by many other empirical studies. In this paper, I resolve the contradiction by reanalyzing the data from the 154 sequences. I demonstrate that translation elongation accounts for about 17% of total variation in protein production and that the previous conclusion is due to the use of a codon adaptation index (CAI) that does not account for the mutation bias in characterizing codon adaptation. The effect of translation elongation becomes undetectable only when translation initiation is unrealistically slow. A new index of translation elongation ITE is formulated to facilitate studies on the efficiency and evolution of the translation machinery.  相似文献   

18.
Kofman A  Graf M  Deml L  Wolf H  Wagner R 《Tsitologiia》2003,45(1):94-100
Codon usage is considered one of the critical factors that limit the expression rate of heterologous genes. Impaired translation efficiency, specifically insufficient amount of corresponding tRNAs and changed startcodon context, are believed to account for the low translation initiation and elongation rates during the protein biosynthesis in unicellular organisms. Translational efficiency is probably not the primary factor influencing codon usage diversity in mammalian cells. However, the other possible mechanisms preventing expression of genes with low-usage such as mRNA stability, processing and nucleocytoplasmic transport, are not adequately explored. In our work, we addressed the question of whether codon usage differences affect exclusively translational efficiency of mammalian gene products. We demonstrated that the CMV-induced expression of gag-reporter in human H1299 cell line was influenced by the nucleotide composition of the mRNA, and the limitation of gag expression appeared to be inversely related to the level of codon optimization. However, cytoplasmic expression of the gag-reporter driven by vaccinia virus/T7 RNA polymerase hybrid system rescued its expression independently of HIV-1 gag mRNA nucleotide content. We concluded that impaired HIV-1 gag expression may be caused by translation-independent mechanisms, which probably play a major role in codon usage-mediated defects in heterologous gene expression in mammalian cells.  相似文献   

19.
Eukaryotic translation initiation begins with assembly of a 48S ribosomal complex at the 5' cap structure or at an internal ribosomal entry segment (IRES). In both cases, ribosomal positioning at the AUG codon requires a 5' untranslated region upstream from the initiation site. Here, we report that translation of the genomic RNA of human immunodeficiency virus type 2 takes place by attachment of the 48S ribosomal preinitiation complex to the coding region, with no need for an upstream 5' untranslated RNA sequence. This unusual mechanism is mediated by an RNA sequence that has features of an IRES with the unique ability to recruit ribosomes upstream from its core domain. A combination of translation assays and structural studies reveal that sequences located 50 nucleotides downstream of the AUG codon are crucial for IRES activity.  相似文献   

20.
In most organisms, the information necessary to specify the native 3D-structures of proteins is encoded in the corresponding mRNA sequences. Translational accuracy and efficiency are coupled and sequences that are slowly translated play an essential role in the concomitant folding of protein domains. Here, we suggest that the well-known mechanisms for the regulation of translational efficiency, which involves mRNA structure and/or asymmetric tRNA abundance, do not apply to all organisms. We propose that Plasmodium, the parasite responsible for malaria, uses an alternative strategy to slow down ribosomal speed and avoid multidomain protein misfolding during translation. In our model, the abundant Low Complexity Regions present in Plasmodium proteins replace the codon preferences, which influence the assembly of protein secondary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号