首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distribution of GABA-like immunoreactive neurons in the slug Limax maximus   总被引:2,自引:0,他引:2  
Summary Immunohistochemical techniques were used to study the distribution of gamma-amino butyric acid (GABA)-like immunoreactive neurons in the nervous system of the slug Limax maximus. Approximately 170 GABA-like immunoreactive cell bodies were found in the central nervous system. These were located in the cerebral, buccal and pedal ganglia. Most GABA-like immunoreactive neurons had small cell bodies, which were aggregated into discrete clusters within the cerebral and pedal ganglia. Three pairs of longer, uniquely identifiable, GABA-like immunoreactive cells were found in the cerebral ganglion. GABA-like immunoreactive nerve fibres were also found in all of the central ganglia but were absent from peripheral nerves. These results suggest that GABA acts as a central neurotransmitter in the slug. The possible roles of GABA-ergic neurotransmission in the slug are discussed.  相似文献   

2.
Mouse embryos genetically null for all alphav integrins develop intracerebral hemorrhage owing to defective interactions between blood vessels and brain parenchymal cells. Here, we have used conditional knockout technology to address whether the cerebral hemorrhage is due to primary defects in vascular or neural cell types. We show that ablating alphav expression in the vascular endothelium has no detectable effect on cerebral blood vessel development, whereas deletion of alphav expression in central nervous system glial cells leads to embryonic and neonatal cerebral hemorrhage. Conditional deletion of alphav integrin in both central nervous system glia and neurons also leads to cerebral hemorrhage, but additionally to severe neurological defects. Approximately 30% of these mutants develop seizures and die by 4 weeks of age. The remaining mutants survive for several months, but develop axonal deterioration in the spinal cord and cerebellum, leading to ataxia and loss of hindlimb coordination. Collectively, these data provide evidence that alphav integrins on embryonic central nervous system neural cells, particularly glia, are necessary for proper cerebral blood vessel development, and also reveal a novel function for alphav integrins expressed on axons in the postnatal central nervous system.  相似文献   

3.
The fine structure of the dorsal bodies of the pulmonate limpet Siphonaria pectinata is described in the context of female reproduction involving egg production. In reproductively-active (egg-laying) animals, the ciliated dorsal body cells are filled with lipid droplets and mitochondria. Gap junctions are commonly seen between the cells. The Golgi complexes and the smooth endoplasmic reticulum constitute the other prominent cell organelles. In reproductively-inactive (non-egg-laying) animals, there is a significant reduction in the number of lipid droplets and evidence of reduced synthetic activity in the dorsal bodies. About 12 dorsal body cells are present immediately underneath the perineurium of each cerebral ganglion of the central nervous system. These internal cells are structurally similar to those outside the central nervous system. Cell processes of some of these cells exit the central nervous system at a minimum of three locations on each side and they come in close proximity to the dorsal body cells outside the cerebral ganglia. Like the external cells, the internal cells also communicate via gap junctions and exhibit structural differences according to whether or not the animals are reproductively active. The dorsal body cells, inside and outside the central nervous system, appear to be innervated by neurosecretory axons suggesting neuronal control of dorsal body activity.  相似文献   

4.
1. The changes in FMRFamide (Phe-Met-Arg-Phe-NH2) immunoreactivity in response to incubation in dopamine, serotonin, met-enkephalin, oxytocin, arg-vasopressin and FMRFamide were examined in the central nervous system of the snail, Achatina fulica. 2. When the central nervous system was cultured in medium which contained dopamine and in medium which contained serotonin, the number of immunoreactive neurons increased in the anterior part of the cerebral ganglion and decreased in the sub-esophageal ganglion. 3. When arg-vasopressin was added to the culture medium, the number of immunoreactive neurons increased in the pedal ganglion and decreased in the other sub-esophageal ganglion. 4. By contrast, when the central nervous system was cultured in medium which contained oxytocin, the number of immunoreactive neurons did not increase, but rather decreased, in each ganglion. 5. No changes in immunoreactivity were detected in the central nervous system when it was cultured in medium which contained FMRFamide. 6. It appears, from these results, that the production and release of FMRFamide from different neurons are differentially affected by the physiologically active substances tested.  相似文献   

5.
We investigated the morphology of the central nervous system throughout the larval development ofCarcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.  相似文献   

6.
Corticotropin-releasing factor (CRF) and urocortin (Ucn) are both members of the CRF neuropeptide family. The distribution of Ucn- and CRF-like immunoreactive (ir) structures in the central nervous system of several vertebrate species has been studied, but little is known about that in non-vertebrates. We used a highly specific polyclonal antibody against rat Ucn and CRF to determine and compare the distribution of Ucn- and CRF-like immunoreactivity in the earthworm nervous system. Several Ucn- and CRF-like ir perikarya were described in the cerebral ganglion, subesophageal and ventral cord ganglia. The majority of Ucn-like ir cells were found in the ventral ganglia, whereas CRF-like ir cells were most abundant in the cerebral ganglion. Scattered Ucn- and CRF-like ir varicose fiber terminals were seen in all areas of the earthworm central nervous system. Ucn-like ir cell bodies and fiber terminals were also demonstrated in the pharyngeal wall. No co-localization of Ucn- and CRF-like ir nervous structures were observed. This study provided morphological evidence that Ucn- and CRF-like neurosecretory products exist in the earthworm central nervous system. Furthermore, both the distribution and morphology of Ucn- and CRF-like ir structures were distinct, therefore, it can be hypothesized that these neuropeptides exert different neurendocrine functions in the earthworm nervous system.  相似文献   

7.
Four kinds of neurosecretory cells A, B, U and C are distinguished in the central nervous system of Dendrobaena atheca Cernosvitov. A cells, which show different morphological characteristics under different physiological states and during their cyclic changes, are the most active neurosecretory cells. They form the outer layer of the cortical cell zone in the cerebral ganglion. B cells are large and medium sized and are distributed in all parts of the central nervous system. U cells are found only in the sub-pharyngeal ganglion while C cells are distributed in the sub-pharyngeal as well as in the ventral nerve cord ganglion. The number and secretory activity of C cells decrease in caudal direction. Further, Gomori-positive cells are also observed in the ganglia of the vegetative nervous system. A rudimentary neurohaemal organ, the storage zone, has been observed in the cerebral ganglion and there appears to be another neurohaemal area in the ventral nerve cord ganglion. The storage zone is formed by the terminal ends of the axons of A cells. The chrome alum haematoxylin phloxin (CHP) and aldehyde fuchsin (AF) positive substances in the form of granules are found in this area. The cerebral ganglion is richly supplied by blood capillaries. The distal end of the axons of B cells are swollen like a bulb while in some cases the axons are united to form an axonal tract. Extra-cellular material is abundant in different parts of the nervous system. In all cell types, the perinuclear zone is the first to show activity in the secretory cycle. It appears that the nucleus may be involved in the elaboration of the neurosecretory material in the cells.  相似文献   

8.
The acute central nervous system effects of relaxation techniques (RT) have not been systematically studied. We conducted a controlled, randomized study of the central nervous system effects of RT using spectral analysis of EEG activity. Thirty-six subjects were randomized to either RT or a music comparison condition. After listening to an RT audiotape or music audiotapes daily for 6 weeks, the acute central nervous system effects of RT and music were measured using power spectral analysis of alpha and theta EEG activity in all cortical regions. RT produced significantly greater increases in theta activity in multiple cortical regions compared to the music condition. These findings are consistent with widespread reductions in cortical arousal during RT. They extend previous findings and suggest that theta, and not alpha, EEG may be the most reliable marker of the central nervous system effects of RT. These findings demonstrate that RT produce greater reductions in central nervous system activity than a credible comparison condition. The findings suggest that RT represent a hypoactive central nervous system state that may be similar to Stage 1 sleep and that RT may exert their therapeutic effects, in part, through cerebral energy conservation/restoration.  相似文献   

9.
The bag cells of the marine mollusc Aplysia are model neuroendocrine cells involved in the initiation of egg laying and its associated behaviors, but the natural stimulus triggering bag-cell activity is not known. The atrial gland of A. californica, an exocrine organ in the reproductive tract, contains two structurally related peptides (A and B) which can induce an afterdischarge in vitro, and these peptides can be used to probe the central nervous system for sites where extrinsic excitatory input onto the bag-cell system might occur. These sites were identified in a series of lesion and ablation experiments. The entire central nervous system was removed from an animal and placed in a chamber with two compartments which could be independently perfused, allowing peptides (atrial gland extract or purified peptide B) to be selectively applied to specific regions of the nervous system while bag-cell activity was monitored using extracellular suction electrodes. Afterdischarges were consistently and reliably induced when peptides were applied to the cerebral ganglion, the pleural ganglia, the cerebropleural connectives, or the rostral 10-15% of the pleurovisceral connectives, provided that an intact neuronal pathway connected the site of peptide application with the bag cells. In contrast, afterdischarges were never observed when peptides were selectively applied to the buccal or pedal ganglia and only rarely observed when applied to the abdominal ganglion and caudal pleurovisceral connectives. These results support the hypothesis that bag-cell processes and/or neuron(s) presynaptically excitatory to the bag cells are located in the pleural and cerebral ganglia and narrow the region of the central nervous system where the critical initiator element(s) can be identified.  相似文献   

10.
Abstract— The concentration of beta-trace protein, a low molecular weight water-soluble protein, was significantly higher in cerebral and cerebellar white matter than in grey matter. A similar distribution was found for transferrin. The concentrations of gamma-trace protein and pre-albumin were almost constant in cerebral and cerebellar white and grey matter. A different distribution was shown for albumin, betalc/betalA globulins, and the immunoglobulins G, A and M, with the highest concentrations mostly encountered in the highly vascularized basal ganglia and grey matter, and the lowest concentrations in white matter. Thus, different parameters, hitherto unknown determine the distribution within the central nervous system of various proteins-those which originate from serum, and beta-trace protein which originates mainly from the central nervous system.
The amounts of the different proteins were higher in the choroid plexus than in brain tissue, with the exception of gamma-trace protein.
Foetal brains contained increasing concentrations of beta-trace protein and of transferrin with age.
Femoral nerve contained lower concentrations of beta-trace protein and gamma-trace protein, and higher concentrations of the other proteins, than the central nervous system.  相似文献   

11.
Summarized literature and experimental author's data are presented concerning the structure of the nervous system and identification of individual neurons in the snail Helix lucorum. Information about especially well-known neurons is given in a table, maps of the ganglia are presented altogether with the results of retrograde staining of different cerebral and suboesophageal nerves. Are given the references concerning morphology of the central nervous system of the snail and identifiable neurons.  相似文献   

12.
In numerous clinical observations, it has been noted that steroid hormones have effects upon the central nervous system. Earlier interpretations of this relationship were largely speculative until newer methods permitted quantitation of actions of hormones and hormonal deficiencies on cerebral metabolism. The present studies indicate that certain steroids which affect behavior also influence cerebral metabolism.  相似文献   

13.
硫化氢是继NO和CO之后发现的又一种新的气体信号分子,其被认为是一种神经递质,在中枢神经系统中起着重要的作用。内源性H2S主要由胱硫醚-β合酶(CBS)和胱硫醚γ-裂解酶(CSE)合成,其不仅可以直接作用于中枢神经系统发挥作用,还能通过抗氧化、调节神经内分泌及脑血管功能,进而间接影响中枢神经系统功能,具有广泛的生理作用。近年来,越来越多的研究发现内源性H2S在AD、热惊厥、PD、脑卒中、缺血再灌注脑损伤及遗传性疾病脑损害等神经系统疾病的发病过程中也起着重要作用。本文简要介绍H2S的生化和生理特点,并总结其在中枢神经系统中作用的进展。  相似文献   

14.
An optimal therapeutics to manage opioid withdrawal syndrome is desired for opioid addiction treatment. Down-regulation of endogenous endomorphin-2 (EM2) level in the central nervous system after continuous morphine exposure was observed, which suggested that increase of EM2 could be an alternative novel method for opioid dependence. As a short peptide, the short half-life of EM2 limits its clinical usage through conventional administration. In the present study, we engineered an EM2 gene using a signal peptide of mouse growth factor for an out-secretory expression of EM2 and an adenovirus as a vector, which ultimately sustained the release of EM-2. After administration of the adenovirus in central nervous system, a sustained increase of EM2 level in the cerebral spinal fluid (CSF) was observed along with a reduction of morphine withdrawal syndrome. These findings suggest that the engineered EM2 gene delivered to the central nervous system could be a novel therapeutics for withdrawal syndrome in opioid dependent subjects.  相似文献   

15.
Microbes use numerous strategies to invade the central nervous system. Leukocyte-facilitated entry is one such mechanism whereby intracellular pathogens establish infection by taking advantage of leukocyte trafficking to the central nervous system. Key components of this process include peripheral infection and activation of leukocytes, activation of cerebral endothelial cells with or without concomitant infection, and trafficking of infected leukocytes to and through the blood-brain or blood-cerebrospinal fluid barrier.  相似文献   

16.
17.
18.
Enzyme histochemistry and immunocytochemistry were used to determine the distribution of neurons in the snail Helix aspersa which exhibited nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity and/or immunoreactivity to nitric oxide synthase (NOS). NADPH diaphorase-positive cells and fibres were distributed extensively throughout the central and peripheral nervous system. NADPH diaphorase-positive fibres were present in all neuropil regions of the central and peripheral ganglia, in the major interganglionic connectives and in peripheral nerve roots. NADPH diaphorase-positive cell bodies were found consistently in the eyes, the lips, the tentacular ganglia and the procerebral lobes of the cerebral ganglia; staining of cell bodies elsewhere in the nervous system was capricious. The distribution of NOS-like immunoreactivity differed markedly from that of NADPH diaphorase activity. Small clusters of cells which exhibited NOS-like immunoreactivity were present in the cerebral and pedal ganglia; fibres which exhibited NOS-like immunoreactivity were present in restricted regions of the neuropil of the central ganglia. The disjunct distributions of NADPH diaphorase activity and NOS-like immunoreactivity in the neurvous system of Helix suggest that the properties of neuronal NOS in molluscs may differ sigificantly from those described previously for vertebrate animals.  相似文献   

19.
Summary The distribution of serotonin (5HT)-containing neurons in the central nervous system of the snail Helix pomatia has been determined in whole-mount preparations by use of immunocytochemical and in vivo 5,6-dihydroxy-tryptamine labelling. 5HT-immunoreactive neuronal somata occur in all but the buccal and pleural ganglia. Immunoreactive fibres are present throughout the central nervous system. The 5HT-immunoreactive neuronal somata characteristically appear in groups, located mainly in the cerebral, pedal, visceral and right parietal ganglia. The majority of 5HT-immunoreactive neurons is located in the pedal ganglia. Additionally a dense network of 5HT-immunoreactive varicose fibres is found in the neural sheath of the central nervous system including all the nerves and ganglia. The number and distribution of 5HT-immunoreactive neurons correlates with that demonstrated by 5,6-dihydroxytryptamine labelling method.  相似文献   

20.
The investigations of sprouting and reactive synaptogenesis in motor structures of the spinal cord, brain stem, thalamus, and cerebral cortex are reviewed. The reactions of the neurons and neuronal connections to injury and the ability of the nervous system to recover the impaired connections in the early postnatal period are compared with those in adult animals. The sprouting phenomenon appearing in the intact central nervous system is analyzed too. The mechanisms of synaptic reorganization of the nervous centers are discussed.Neirofiziologiya/Neurophysiology, Vol. 26, No. 4, pp. 299–314, June–July, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号