首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
2.
3.
4.
In rats changes in plasma membrane enzyme activities due to Gal-N intoxication were studied by enzymehistochemical methods. The bile canalicular 5'-nucleotidase and nucleoside polyphosphatase activities decreased; the sinusoidal 5'-nucleotidase remained unchanged. The bile canalicular leucyl-beta-naphthyl-amidase showed an increase in activity; the alkaline phosphatase activity remained unchanged. In contrast to the spotty necrosis, changes in plasma membrane enzyme activities were seen in all liver cells, suggesting that changes of these activities, occurring after Gal-N treatment, do not correlate with cell death. The conclusion was drawn that the deviations of the enzyme activities might be due to changes in the lipid environment of the enzyme proteins in the membrane. With the exception of alkaline phosphatase, partial hepatectomy caused the same changes in enzyme activities as did Gal-N intoxication. Nevertheless Gal-N administration to partial hepatectomized rats did not lead to hepatic necrosis. Galactose given simultaneously or within two hours after Gal-N prevented both changes in plasma membrane enzyme activities and hepatocellular damage. This suggests an important role of galactolipids and galactoproteins in the plasma membrane alterations.  相似文献   

5.
6.
The activity of hepatic protein N-glycosylation was compared in rats of different ages by incubating UDP-[14C]glucose with liver microsomes. Dolichyl-phosphate [14C]glucose, [14C]glucosyl-oligosaccharide-lipid and [14C]glycoproteins formed were increased after birth to maximal levels at 2 weeks; thereafter dolichylphosphate [14C]glucose remained constant, while [14C]glucosyl-oligosaccharide-lipid and [14C]glycoproteins were decreased to constant levels at 4 weeks. The postnatal change in the formation of [14C]glycoproteins was similar to the change in the hexosamine content of N-glycans in liver microsomes and plasma, suggesting that the N-glycosylation of proteins in rat liver increases after birth to a maximum at 2 weeks, and thereafter decreases to a constant level at 4 weeks. The possibility of a regulatory role for dolichyl phosphate in glycoprotein synthesis in rat liver during postnatal development was eliminated by demonstrating the inefficiency of exogenous dolichyl phosphate on the postnatal changes in [14C]glycoprotein formation. The transfer of [14C]glucose from UDP-[14C]glucose to denatured alpha-lactalbumin in liver microsomes increased to a maximum at 2 weeks and then decreased to a constant level, as with transfer to endogenous proteins (i.e. the formation of [14C]glycoproteins). On the other hand, the transfer of oligosaccharide from exogenous [14C]glucosyl-oligosaccharide-lipid to denatured alpha-lactalbumin reached a maximum at 2 weeks and then remained constant. These results strongly suggest that oligosaccharide-lipid available for N-glycosylation is limiting in rat liver after 2 weeks post partum. The activities of dolichyl-phosphate glucose, dolichyl-phosphate mannose and dolichyl-pyrophosphate N-acetylglucosamine synthases increased until 2 weeks post partum. Thereafter, the activity of dolichyl-pyrophosphate N-acetylglucosamine synthase decreased to a constant level at 4 weeks, while the activities of dolichyl-phosphate glucose and dolichyl-phosphate mannose synthases remained constant. These results suggest that N-glycosylation of proteins in rat liver increases until 2 weeks post partum, and that this depends on the activities of dolichol-pathway enzymes as a whole rather than on the activity of specific enzymes. N-Glycosylation then decreases to a constant level at 4 weeks due to decreases in the activities of enzymes responsible for oligosaccharide assembly on lipids, including dolichyl-pyrophosphate N-acetylglucosamine synthase.  相似文献   

7.
8.
9.
10.
11.
Age-related changes in enzyme activities, protein electrophoretic patterns and lipid composition of kidney-brush-border membranes were studied in 10-20- and 30-month-old male and female Wistar rats. Polyacrylamide gel electrophoresis of membrane proteins revealed very little changes with increasing age, whether males or females were considered. The Km of three hydrolases - maltase, L-aminopeptidase and alkaline phosphatase - were not affected by age while the Vmax of maltase and alkaline phosphatase, but not of L-aminopeptidase, decreased from 10 to 30 months. The phospholipid to protein ratio which remained constant between 10 and 20 months, rose in both sexes from 20 to 30 months. In males, the cholesterol content of the membrane increased faster than that of phospholipid and the cholesterol over phospholipid ratio was then greater at 30 months than at 10 months, while in females this ratio remained unchanged in the course of aging. The fatty acid composition of the brush-border remained more or less constant with age in female rat whereas in the male, a 10% decrease in the proportion of arachidonic acid from 10 to 30 months was responsible for a lower unsaturation index.  相似文献   

12.
Summary In rats changes in plasma membrane enzyme activities due to Gal-N intoxication were studied by enzymehistochemical methods. The bile canalicular 5-nucleotidase and nucleoside polyphosphatase activities decreased; the sinusoidal 5-nucleotidase remained unchanged. The bile canalicular leucyl--naphthyl-amindase showed an increase in activity; the alkaline phosphatase activity remained unchanged. In contrast to the spotty necrosis, changes in plasma membrane enzyme activities were seen in all liver cells, suggesting that changes of these activities, occurring after Gal-N treatment, do not correlate with cell death. The conclusion was drawn that the deviations of the enzyme activities might be due to changes in the lipid environment of the enzyme proteins in the membrane.With the exception of alkaline phosphatase, partial hepatectomy caused the same changes in enzyme activities as did Gal-N intoxication. Nevertheless Gal-N administration to partial hepatectomized rats did not lead to hepatic necrosis. Galactose given simultaneously or within two hours after Gal-N prevented both changes in plasma membrane enzyme activities and hepatocellular damage. This suggests an important role of galactolipids and galactoproteins in the plasma membrane alterations.Dedicated to Prof. Dr. E. Havinga on the occasion of his 70th birthday  相似文献   

13.
The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.  相似文献   

14.
The patterns of brain enzymes linked to energy metabolism have been determined in rats aged between 3 and 21 months and compared to those of the developing brain as an estimate of the senescent energy capacity of this organ. During aging, pyruvate kinase increases, pointing towards an enhancement of the glucose-dependence of this organ. However, NAD-isocitrate dehydrogenase declines, suggesting a reduction of Krebs cycle activity in the aged rat brain. An increase in cytoplasmic NAD-malate dehydrogenase found during aging could provide an alternative mechanism of NAD recovery.  相似文献   

15.
Morphological changes in the rat kidney following long-term diabetes   总被引:4,自引:0,他引:4  
The morphological basis of diabetic nephropathy has been studied using light and electron microscopy. Kidneys of streptozotocin-induced diabetic rats were examined on the light microscope at 4 weeks and 8 months after induction of diabetes mellitus. In addition, the 8-month diabetic kidneys were examined with the electron microscope. Renal hypertrophy was evidenced by the increase in the weight of kidneys of diabetic rats. Whilst the diabetic kidneys were approximately twice as large after 4 weeks they were only 30% larger compared to age-matched controls after 8 months of induction of diabetes. After 4 weeks, light microscopy revealed dilated tubules within the cortex of the diabetic kidneys. Light microscopy showed a significant amount of destruction of the distal convoluted tubules while electron microscopy revealed a spectrum of damage that included basement membrane thickening, loss of podocytic foot processes, disruption of tubular basal infoldings and their related mitochondria and fibrosis of the tubules 8 months after induction of diabetes. It is concluded that renal hypertrophy persists after a prolonged occurrence of diabetes but the extensive damage and loss of renal tissue including the loss of the foot processes of podocytes might be partly responsible for the clinical presentation of diabetic nephropathy.  相似文献   

16.
Human and animal exposure demonstrates that uranium is nephrotoxic. However, attempts to reduce it were not found suitable for clinical use. Dietary fish oil (FO) enriched in ω-3 fatty acids reduces the severity of cardiovascular and renal diseases. Present study investigates the protective effect of FO on uranyl nitrate (UN)-induced renal damage. Rats prefed with experimental diets for 15 days, given single nephrotoxic dose of UN (0.5 mg/kg body weight) intraperitoneally. After 5 d of UN treatment, serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), oxidative stress and phosphate transport were analyzed in rat kidney. UN nephrotoxicity was characterized by increased serum creatinine and blood urea nitrogen. UN increased the activity of lactate dehydrogenase and NADP-malic enzyme whereas decreased malate, isocitrate and glucose-6-phophate dehydrogenases; glucose-6-phophatase, fructose-1, 6-bisphosphatase and BBM enzyme activities. UN caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation, activities of superoxide dismutase, glutathione peroxidase and decreased catalase activity. Feeding FO alone increased activities of enzymes of glucose metabolism, BBM, oxidative stress and Pi transport. UN-elicited alterations were prevented by FO feeding. However, corn oil had no such effects and was not similarly effective. In conclusion, FO appears to protect against UN-induced nephrotoxicity by improving energy metabolism and antioxidant defense mechanism.  相似文献   

17.
18.
Flux through the tricarboxylic acid cycle was calculated from oxygen consumption in hearts perfused near the physiological work load. Activities of citrate synthase, 2-oxoglutarate dehydrogenase and succinate dehydrogenase were measured in the same hearts. Only the activities of 2-oxoglutarate dehydrogenase correlated with calculated fluxes through the cycle.  相似文献   

19.
20.
Gentamicin (GM)-induced nephrotoxicity limits its long-term clinical use. Several agents/strategies were attempted to prevent GM nephrotoxicity but were not found suitable for clinical practice. Dietary fish oil (FO) retard the progression of certain types of cancers, cardiovascular and renal disorders. We aimed to evaluate protective effect of FO on GM-induced renal proximal tubular damage. The rats were pre-fed experimental diets for 10 days and then received GM (80 mg/kg body weight/day) treatment for 10 days while still on diet. Serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), oxidative stress and phosphate transport in rat kidney were analyzed. GM nephrotoxicity was recorded by increased serum creatinine and blood urea nitrogen. GM increased the activities of lactate and glucose-6-phosphate dehydrogenases whereas decreased malate, isocitrate dehydrogenases; glucose-6 and fructose-1,6-bisphosphatases; superoxide dismutase, catalase, glutathione peroxidase and BBM enzymes. In contrast, FO alone increased enzyme activities of carbohydrate metabolism, BBM and oxidative stress. FO feeding to GM treated rats markedly enhanced resistance to GM elicited deleterious effects and prevented GM-induced decrease in 32Pi uptake across BBM. Dietary FO supplementation ameliorated GM-induced specific metabolic alterations and oxidative damage due to its intrinsic biochemical/antioxidant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号