首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of alkaline serine proteases were isolated from the culture filtrate of an alkalophilic actinomycete, Nocardiopsis dassonvillei OPC-210. The enzymes (protease I and protease II) were purified by acetone precipitation, DEAE-Sephadex A-50, CM-Sepharose CL-6B, Sephadex G-75 and phenyl-Toyopearl 650 M column chromatography. The purified enzymes showed a single band on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weights of proteases I and II were 21,000 and 36,000, respectively. The pIs were 6.4 (protease I) and 3.8 (protease II). The optimum pH levels for the activity of two proteases were pH 10-12 (protease I) and pH 10.5 (protease II). The optimum temperture for the activity of protease I was 70 degrees C and that for protease II was 60 degrees C. Protease I was stable in the range of pH 4.0-8.0 up to 60 degrees C and protease II was stable in the range of pH 6.0-12.0 up to 50 degrees C.  相似文献   

2.
Extracellular Bacillus proteases are used as additives in detergent powders. We identified a Bacillus strain that produces a protease with an extremely alkaline pH optimum; this protease is suitable for use in modern alkaline detergent powders. The alkalophilic strain Bacillus alcalophilus PB92 gene encoding this high-alkaline serine protease was cloned and characterized. Sequence analysis revealed an open reading frame of 380 amino acids composed of a signal peptide (27 amino acids), a prosequence (84 amino acids), and a mature protein of 269 amino acids. Amino acid comparison with other serine proteases shows good homology with protease YaB, which is also produced by an alkalophilic Bacillus strain. Both show moderate homology with subtilisins but show some remarkable differences from subtilisins produced by neutrophilic bacilli. The prosequence of PB92 protease has no significant homology with prosequences of subtilisins. The abundance of negatively charged residues in the prosequences of PB92 protease is especially remarkable. The cloned gene was used to increase the production level of the protease. For this purpose the strategy of gene amplification in the original alkalophilic Bacillus strain was chosen. When introduced on a multicopy plasmid, the recombinant strain was unstable; under production conditions, plasmid segregation occurred. More stable ways of gene amplification were obtained by chromosomal integration. This was achieved by (i) homologous recombination, resulting in a strain with two tandemly arranged genes, and (ii) illegitimate recombination, resulting in a strain with a second copy of the protease gene on a locus not adjacent to the originally present gene. Both strains showed increased production and were more stable than the plasmid-containing strain. Absolute stability was only found when nontandem duplication occurred. This method of gene amplification circumvents stability problems often encountered in gene amplification in Bacillus species when plasmids or tandemly arranged genes in the chromosome are used.  相似文献   

3.
T sujibo , H., M iyamoto , K., H asegawa , T. & I namori , Y. 1990. Purification and characterization of two types of alkaline serine proteases produced by an alkalophilic actinomycete. Journal of Applied Bacteriology 69 , 520–529.
Two types of alkaline serine proteases were isolated from the culture filtrate of an alkalophilic actinomycete, Nocardiopsis dassonvillei OPC-210. The enzymes (protease I and protease II) were purified by acetone precipitation, DEAE-Sephadex A-50, CM-Sepharose CL-6B, Sephadex G-75 and phenyl-Toyopearl 650 M column chromatography. The purified enzymes showed a single band on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weights of proteases I and II were 21000 and 36000, respectively. The pIs were 6.4 (protease I) and 3.8 (protease II). The optimum pH levels for the activity of two proteases were pH 10–12 (protease I) and pH 10.5 (protease II). The optimum temperature for the activity of protease I was 70°C and that for protease II was 60°C. Protease I was stable in the range of pH 4.0–8.0 up to 60°C and protease II was stable in the range of pH 6.0–12.0 up to 50°C.  相似文献   

4.
Extracellular Bacillus proteases are used as additives in detergent powders. We identified a Bacillus strain that produces a protease with an extremely alkaline pH optimum; this protease is suitable for use in modern alkaline detergent powders. The alkalophilic strain Bacillus alcalophilus PB92 gene encoding this high-alkaline serine protease was cloned and characterized. Sequence analysis revealed an open reading frame of 380 amino acids composed of a signal peptide (27 amino acids), a prosequence (84 amino acids), and a mature protein of 269 amino acids. Amino acid comparison with other serine proteases shows good homology with protease YaB, which is also produced by an alkalophilic Bacillus strain. Both show moderate homology with subtilisins but show some remarkable differences from subtilisins produced by neutrophilic bacilli. The prosequence of PB92 protease has no significant homology with prosequences of subtilisins. The abundance of negatively charged residues in the prosequences of PB92 protease is especially remarkable. The cloned gene was used to increase the production level of the protease. For this purpose the strategy of gene amplification in the original alkalophilic Bacillus strain was chosen. When introduced on a multicopy plasmid, the recombinant strain was unstable; under production conditions, plasmid segregation occurred. More stable ways of gene amplification were obtained by chromosomal integration. This was achieved by (i) homologous recombination, resulting in a strain with two tandemly arranged genes, and (ii) illegitimate recombination, resulting in a strain with a second copy of the protease gene on a locus not adjacent to the originally present gene. Both strains showed increased production and were more stable than the plasmid-containing strain. Absolute stability was only found when nontandem duplication occurred. This method of gene amplification circumvents stability problems often encountered in gene amplification in Bacillus species when plasmids or tandemly arranged genes in the chromosome are used.  相似文献   

5.
Bacillus subtilis strain FP-133, isolated from a fermented fish paste, synthesized two novel halotolerant extracellular proteases (expro-I and expro-II), showing activity and stability at concentrations of 0-20% (w/v) NaCl. Each protease was purified to homogeneity and characterized. The purified expro-I was a non-alkaline serine protease with an optimum pH of 7.5, although most serine proteases from Bacillus strains act at the alkaline side. The molecular mass of expro-I was 29 kDa. The purified expro-II was a metalloprotease with a molecular mass of 34 kDa. It was activated by Fe(2+), which has never been reported as a bacterial protease activator. At a concentration of 7.5% (w/v) NaCl, both proteases preferred animal proteins to vegetable proteins as natural substrates. In addition, under saline conditions, expro-I and II showed high catalytic activity toward gelatin and casein respectively.  相似文献   

6.
The chromatin fraction was prepared from yeast Saccharomyces cerevisiae free from cytoplasmic contamination except for a trace of mitochondria. When the yeast chromatin was incubated with histones as a substrate it showed three peaks of proteolytic activity as approximately pH 4, pH 7 and pH 11. These activities were separated from each other by differential extractions from chromatin and successive gel filtration through Sephadex G-100. Proteases were partially characterized by affinity labeling with [3H]diisopropylfluorophosphate (iPr2P-F) and by various protease inhibitors. The neutral and the alkaline proteases were serine proteases with a molecular mass of 35 kDa and 25 kDa respectively. The acidic protease showed a molecular size larger than 100 kDa on the gel filtration, and was probably an aspartyl protease because it was most strongly inhibited by pepstatin. A iPr2P-F-binding protein with a molecular mass of 66 kDa, found in chromatin, was likely to be converted to the alkaline protease of 25 kDa when chromatin was incubated at pH 10 or in 6 M urea/0.1 M phosphoric acid at the extraction. The distribution of proteolytic activities and iPr2P-F-binding proteins were compared among chromatins from different strains and from cells in different growth phases and it was found that these three proteases were present in all of them but with different proportions. Considering that rat liver chromatin contains equivalents to these proteases [Tsurugi, K. and Ogata, K. (1982) J. Biochem. (Tokyo) 92, 1369-1381], the results suggested that they play some important roles in the function of eukaryotic chromatin.  相似文献   

7.
The physicochemical and enzymatic properties of five different extracellular proteases of Streptomyces moderatus were studied. The first protease was found to be a metal chelator sensitive protease with a Mr of 21,000 +/- 1000 a and a pI of 4.6. The second enzyme was an anionic trypsin-like protease (Mr 19,000 +/- 1000; pI 3.8) with a Km value of 4.76 X 10(-4) M on N-benzoyl-L-arginine-p-nitroanilide. A Km value of 1.52 X 10(-4) M was obtained when N-benzoyl-L-arginine ethyl ester was used as the substrate. The other three enzymes were found to be serine alkaline proteases with Mr's of 22,000, 29,000, and 23,000 +/- 1000 and with respective pI's of 7.8, 8.4, and 9.2. All the proteases showed optimum activity in the alkaline pH range. One of the three proteases was found to possess chymotrypsin and elastase-like properties. All five proteases were found to be unstable at temperatures above 60 degrees C. Except the trypsin-like protease, which was stable only in acidic pH, all other enzymes were found to be stable over a wide range of pH.  相似文献   

8.
Abstract  The protein digestive capability of the larvae of the longhorn beetle ( Oemona hirta , Coleoptera: Cerambycidae, Fabricius, 1775) was investigated. This species feeds only on wood where there is a high proportion of vascular tissue. The pH of the midgut, the major digestive organ, was alkaline and protein hydrolysis was maximal at alkaline pH. Use of specific synthetic peptide substrates showed that the major protease activities were the endopeptidases, trypsin and chymotrypsin-like activity, and the exopeptidase, leucine aminopeptidase and the pH curves corresponded to that with protein substrate. Studies using a range of serine protease inhibitors as well as specific inhibitors of metalloproteases, cysteine proteases and aspartate proteases confirmed a serine protease-based digestive system similar to earlier reports of sapwood-feeding Cerambycids. Control of these insect pests using protease inhibitors is discussed.  相似文献   

9.
Summary Alkaliphilic Bacillus sp. no. AH-101 produces an extremely thermostable alkaline serine protease that has a high optimum pH (pH 12–13) and shows keratinolytic activity. The gene encoding this protease was cloned in Escherichia coli and expressed in B. subtilis. The cloned protease was identical to the AH-101 protease in its optimum pH and thermostability at high alkaline pH. An open reading frame of 1083 bases, identified as the protease gene, was preceded by a putative Shine-Dalgarno sequence (AAAGGAGG) with a spacing of 11 bases. The deduced amino acid sequence revealed a pre-pro-peptide of 93 residues followed by the mature protease comprising 268 residues. AH-101 protease showed slightly higher homology to alkaline proteases from alkaliphilic bacilli (61.2% and 65.3%) than to those from neutrophilic bacilli (54.9–56.7%). Also AH-101 protease and other proteases from alkaliphilic bacilli shared common amino acid changes and a four amino acid deletion when compared to the proteases from neutrophilic bacilli. AH-101 protease, however, was distinct among the proteases from alkaliphilic bacilli in showing the lowest homology to the others.Correspondence to: H. Takami  相似文献   

10.
The evolution of digestive proteases during larval development of Rhynchophorus ferrugineus (Olivier, 1790) has been studied. A progressive increase of protease activity has been found. The optimum pH for proteolytic activity against azocasein was determined. Caseinograms revealed an active complex of alkaline proteases from the early stages of the development. From the apparent molecular masses, three groups of proteases have been found - high molecular-mass proteases, medium molecular-mass proteases, and low molecular-mass proteases. Studies using specific protease inhibitors showed the major presence of serine proteases in gut extracts. The results obtained from larvae reared on different substrates have made possible a comparative assessment of the influence of diet on the development of the digestive enzymatic system. Larvae fed on an artificial diet showed a complete pattern of digestive proteases. Data suggest that this diet seems to be suitable for future research with this insect pest.  相似文献   

11.
Five pairs of degenerate universal primers have been designed to identify the general protease gene profiles from some distinct Bacillus thuringiensis strains. Based on the PCR amplification patterns and DNA sequences of the cloned fragments, it was noted that the protease gene profiles of the three distinct strains of B. thuringiensis subsp. kurstaki HD73, tenebrionis and israelensis T14001 are varied. Seven protease genes, neutral protease B (nprB), intracellular serine protease A (ispA), extracellular serine protease (vpr), envelope-associated protease (prtH), neutral protease F (nprF), thermostable alkaline serine protease and alkaline serine protease (aprS), with known functions were identified from three distinct B. thuringiensis strains. In addition, five DNA sequences with unknown functions were also identified by this facile analytical method. However, based on the alignment of the derived protein sequences with the protein domain database, it suggested that at least one of these unknown genes, yunA, might be highly protease-related. Thus, the proposed PCR-mediated amplification design could be a facile method for identifying the protease gene profiles as well as for detecting novel protease genes of the B. thuringiensis strains.  相似文献   

12.
对海洋细菌QD80所产低温碱性蛋白酶进行了基因克隆和序列分析,对此酶的性质进行了初步研究.此酶基因开放阅读框架为1377bp,分子量为49.9kD.此序列上游-8bp处为该基因的SD序列,-10区和-35区分别有5′TAGAAT3′和5′TTGACC3′的保守序列.该酶最适pH为9.5,最适反应温度为30℃,在10℃酶活力仍能保持30%以上.该酶对氧化剂H2O2的抗氧化作用明显,浓度达到4gL时酶活仍保留85%.该蛋白酶的低温适应性和抗氧化特性将对其在低温洗涤领域的应用提供广泛的潜在应用价值.  相似文献   

13.
Summary Hyperthermostable proteases were characterized from five archaeobacterial species (Thermococcus celer, T. stetteri, Thermococcus strain AN 1, T. litoralis, Staphylothermus marinus) and the hyperthermophilic eubacterium Thermobacteroides proteolyticus. These proteases, which were found to be of the serine type, exhibited a preference for phenylalanine in the carboxylic side of the peptide. The enzymes from Thermococcus stetteri and T. litoralis hydrolysed most substrates (peptides) tested. All proteases were extremely thermostable and demonstrated optimal activities between 80 and 95°C. The pH optimum was either neutral (T. celer, Thermococcus strain AN 1) or alkaline. The protease of Thermobacteroides proteolyticus was optimally active at pH 9.5. Zymogram staining showed the presence of multiple protease bands for all strains investigated.Offprint requests to: G. Antranikian  相似文献   

14.
Naegleria fowleri is the etiologic agent of primary amoebic meningoencephalitis (PAM). Proteases have been suggested to be involved in tissue invasion and destruction during infection. We analyzed and compared the complete protease profiles of total crude extract and conditioned medium of both pathogenic N. fowleri and non-pathogenic Naegleria gruberi trophozoites. Using SDS-PAGE, we found differences in the number and molecular weight of proteolytic bands between the two strains. The proteases showed optimal activity at pH 7.0 and 35 degrees C for both strains. Inhibition assays showed that the main proteolytic activity in both strains is due to cysteine proteases although serine proteases were also detected. Both N. fowleri and N. gruberi have a variety of different protease activities at different pH levels and temperatures. These proteases may allow the amoebae to acquire nutrients from different sources, including those from the host. Although, the role of the amoebic proteases in the pathogenesis of PAM is not clearly defined, it seems that proteases and other molecules of the parasite as well as those from the host, could be participating in the damage to the human central nervous system.  相似文献   

15.
棉铃虫幼虫中肠主要蛋白酶活性的鉴定   总被引:25,自引:3,他引:25  
根据棉铃虫Helicoverpa armigera(Hubner)中肠酶液对蛋白酶专性底物在不同pH下的水解作用,棉铃虫中肠的3种丝氨酸蛋白酶得到鉴定。它们是:强碱性类胰蛋白酶,水 解a-N-苯甲酰-DL-精氨酸-p-硝基苯胺的最适pH在10.50以上;弱碱性类胰蛋白酶,水解p-甲苯磺酰-L-精氨酸甲酯的最适pH为8.50~9.00;类胰凝乳蛋白酶, 水解N一苯甲酰-L-酪氨酸乙酯的最适pH亦为8.50-9.00。中肠总蛋白酶活性用偶 氮酪蛋白测定,最适pH亦在10.50以上。Ca2+对昆虫蛋白酶无影响,Mg2+仅对弱碱性类胰蛋白酶有激活作用。对苯甲基磺酰氟和甲基磺酰-L-赖氨酸氯甲基酮对弱碱性类胰蛋白酶的抑制作用较强,而对强碱性类胰蛋白酶的抑制作用较弱。甲基磺酰-L苯丙氨酸氯甲基酮除能抑制类胰凝乳蛋白酶外,还能激活弱碱性类胰蛋白酶。对牛胰蛋白酶有强抑制作用的卵粘蛋白抑制剂对昆虫蛋白酶却无抑制作用。大豆胰蛋白酶抑制剂对该虫的3种丝氨酸蛋白酶均有强的抑制作用。  相似文献   

16.
To kill other cells, lymphocytes can exocytose granules that contain serine proteases and pore-forming proteins (perforins). We report that mechanism-based isocoumarin inhibitors inhibited the proteases and inactivated lysis. When inhibited proteases were restored, lysis was also restored, indicating that the proteases were essential for lysis. We found three new lymphocyte protease activities, "Asp-ase,"Met-ase," and "Ser-ase," which in addition to ly-tryptase and ly-chymase, comprise five different protease activities in rat RNK-16 granules. The general serine protease inhibitor 3,4-dichloroisocoumarin (DCI) inhibited all five protease activities. Essentially all protease molecules were inactivated by DCI before lysis was reduced, as determined from DCI's second order inhibition rate constants for the proteases, the DCI concentrations, and the times of pretreatment needed to block lysis. The pH favoring DCI inhibition of lysis was the pH optimum for protease activity. Isocoumarin reagents acylate, and may sometimes secondarily alkylate, serine protease active sites. Granule proteases, inhibited by DCI acylation, were deacylated with hydroxylamine, restoring both the protease and lytic activities. Hydroxylamine does not restore alkylated proteases and did not restore the lytic activities after inhibition with 4-chloro-7-guanidino-3-(2-phenylethoxy)-isocoumarin, a more alkylating mechanism-based inhibitor designed to react with tryptases. It is improbable that isocoumarin reagents directly inactivated pore-forming proteins because 1) these reagents require protease activation, 2) their nonspecific effects are alkylating, and 3) alkylated proteins are not restored by hydroxylamine. We conclude that serine proteases participate in lysis when lysis is mediated by the complete assembly of granule proteins.  相似文献   

17.
A decline in nitrogenase activity (C2H2 reduction) of nodules of Phaseolus vulgaris L. cv. Contander was correlated with a decrease in their soluble protein including leghe-moglobin. Concomitantly, two distinct proteolytic activities against leghemoglobin with acidic and alkaline pH optima were detected. The corresponding proteases were purified about 30-fold by ammonium sulfate precipitation, gel filtration and hydroxy-apatite chromatography. Both the acidic (pH optimum 3.5) and the alkaline (pH optimum 8.0) proteases were thiol enzymes. They were characteristic of senescing nodules, whereas only an acidic serine protease was present in functional nodules.  相似文献   

18.
AIMS: An investigation was carried out on the purification and characterization of an alkaline protease from Bacillus pumilus MK6-5. METHODS AND RESULTS: An alkalophilic Bacillus pumilus MK6-5 was grown in a laboratory fermenter containing 1% reverse osmosis concentrated cheese whey powder, 0.25% corn steep liquor, 1% glucose, 0.5% tryptone, 1% sodium citrate, 0.02% MgSO4.7H2O and 0.65% Na2CO3 at 35 degrees C and pH 9.6, agitation at 250 rev min(-1) and aeration of 1 vvm for 60 h. When the enzyme was purified using ammonium sulphate precipitation, ion exchange and gel filtration chromatographies, a 26.2% recovery of enzyme with 36.6-fold purification was recorded. The purified protease was found to be homogenous by SDS-PAGE with molecular mass estimate of 28 kDa. The enzyme was optimally active at pH 11.5 and temperature of 55-60 degrees C. The Km and kcat values observed with synthetic substrates at 37 degrees C and pH 8.0 were 1.1 mmol l(-1) and 624 s(-1) for Glu-Gly-Ala-Phe-pNA and 3.7 mmol l(-1) and 826 s(-1) for Glu-Ala-Ala-Ala-pNA, respectively. The kinetic data revealed that small aliphatic and aromatic residues were the preferred residues at the P1 position. Inhibition profile exhibited by PMSF suggested the B. pumilus protease to be an alkaline serine protease. CONCLUSIONS: Bacillus pumilus MK6-5 produced a calcium-dependent, thermostable alkaline serine protease. SIGNIFICANCE AND IMPACT OF THE STUDY: The thermostable alkaline protease from Bacillus pumilus MK6-5 will be extremely useful in ultrafiltration membrane cleaning due to its ability to work in broad pH and temperature ranges, and tolerance to detergents, unlike the mesophilic proteases which face these limitations.  相似文献   

19.
AIMS: To evaluate the production of an extracellular serine protease by Dactylella shizishanna and its potential as a pathogenesis factor. METHODS AND RESULTS: An extracellular alkaline serine protease (Ds1) was purified and characterized from the nematode-trapping fungus D. shizishanna using cation-exchange chromatography and hydrophobic interaction chromatography. The molecular mass of the protease was approximately 35 kDa estimated by SDS-PAGE. The optimum activity of Ds1 was at pH 10 and 55 degrees C (over 30 min). The purified protease could degrade purified cuticle of Penagrellus redivivus and a broad range of protein substrates. The purified protease was highly sensitive to phenylmethyl sulfonyl fluoride (PMSF) (0.1 mmol l(-1)), indicating it belonged to the serine protease family. The N-terminal amino acid residues of Ds1 are AEQTDSTWGL and showed a high homology with Aozl and PII, two serine proteases purified from the nematode-trapping fungus Arthrobotrys oligospora. CONCLUSIONS: Nematicidal activity of D. shizishanna was partly related to its ability to produce extracellular serine protease. SIGNIFICANCE AND IMPACT OF THE STUDY: In this report, we purified a new serine protease from D. shizishanna and provided a good foundation for future research on infection mechanism.  相似文献   

20.
The presence of 11 genes encoding subtilisin-like serine proteases was demonstrated by cloning from the genome of alkaliphilic Bacillus sp. strain KSM-LD1. This strain exoproduces the oxidatively stable alkaline protease LD-1 (Saeki et al. Curr Microbiol, 47:337–340, 2003). Among the 11 genes, six genes encoding alkaline proteases (SA, SB, SC, SD, SE, and LD-1) were expressed in Bacillus hosts. However, the other five genes for subtilisin-like proteases (SF, SG, SH, SI, and SJ) were expressed in neither Bacillus hosts nor Escherichia coli. The deduced amino acid sequences of SA, SB, SC, SF, SG, SH, SI, and SJ showed similarity to those of other subtilisin-like proteases from Bacillus strains with only 38 to 86% identity. The deduced amino acid sequence of SD was completely identical to that of an oxidatively stable alkaline protease from Bacillus sp. strain SD521, and that of SE was almost identical to that of a high-molecular mass subtilisin from Bacillus sp. strain D-6 with 99.7% identity. There are four to nine subtilisin-like serine protease genes in the reported genomes of Bacillus strains. At least 11 genes for the enzymes present in the genome of Bacillus sp. strain KSM-LD1, and this is the greatest number identified to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号