首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The lancelet amphioxus (Cephalochordata) is a close relative of vertebrates and thus may enhance our understanding of vertebrate gene and genome evolution. In this context, the globins are one of the best studied models for gene family evolution. Previous biochemical studies have demonstrated the presence of an intracellular globin in notochord tissue and myotome of amphioxus, but the corresponding gene has not yet been identified. Genomic resources of Branchiostoma floridae now facilitate the identification, experimental confirmation and molecular evolutionary analysis of its globin gene repertoire.  相似文献   

2.

Background  

Green fluorescent protein (GFP) has been found in a wide range of Cnidaria, a basal group of metazoans in which it is associated with pigmentation, fluorescence, and light absorbance. A GFP has been recently discovered in the pigmentless chordate Branchiostoma floridae (amphioxus) that shows intense fluorescence mainly in the head region.  相似文献   

3.
4.

Background  

Vasopressin and oxytocin are mammalian neurohypophysial hormones with distinct functions. Vasopressin is involved mainly in osmoregulation and oxytocin is involved primarily in parturition and lactation. Jawed vertebrates contain at least one homolog each of vasopressin and oxytocin, whereas only a vasopressin-family hormone, vasotocin, has been identified in jawless vertebrates. The genes encoding vasopressin and oxytocin are closely linked tail-to-tail in eutherian mammals whereas their homologs in chicken, Xenopus and coelacanth (vasotocin and mesotocin) are linked tail-to-head. In contrast, their pufferfish homologs, vasotocin and isotocin, are located on the same strand of DNA with isotocin located upstream of vasotocin and separated by five genes. These differences in the arrangement of the two genes in different bony vertebrate lineages raise questions about their origin and ancestral arrangement. To trace the origin of these genes, we have sequenced BAC clones from the neurohypophysial gene loci in a cartilaginous fish, the elephant shark (Callorhinchus milii), and in a jawless vertebrate, the Japanese lamprey (Lethenteron japonicum). We have also analyzed the neurohypophysial hormone gene locus in an invertebrate chordate, the amphioxus (Branchiostoma floridae).  相似文献   

5.
Catecholamine receptors mediate wide-ranging functions in vertebrates and invertebrates but are largely unknown in invertebrate chordates such as amphioxus. Catecholaminergic cells have been described in amphioxus adults, but few data are known about the transmembrane signal transduction pathways and the expression pattern of related receptors during development. In Branchiostoma floridae, we cloned a full-length cDNA (AmphiD1/β) that corresponds to the dopamine D1/β receptor previously cloned from a related species of amphioxus, Branchiostoma lanceolatum, but no expression studies have been performed for such receptor in amphioxus. In B. floridae, AmphiD1/β encodes a polypeptide with typical G-protein-coupled receptor features, characterized by highest sequence similarity with D1 dopamine and β-adrenergic receptors. The expression of AmphiD1/β mRNA in different regions of the cerebral vesicle corresponds to that of D1-like receptors in vertebrate homologous structures. Furthermore, in situ experiments show that during development, the expression in the nervous system is restricted to cells located anteriorly. A further expression was found in larvae at the level of the endostyle, but it has no counterpart in the predominant expression domains of vertebrate dopamine and/or adrenergic receptor genes. At the same time, we compared the dopaminergic system, consisting of AmphiTH-expressing cells, with the AmphiD1/β expression. In conclusion, the identification of the AmphiD1/β receptor provides further basis for understanding the evolutionary history of the dopaminergic system at the transition from invertebrates and vertebrates.  相似文献   

6.
Plerocercoid larvae of a tapeworm are frequently found in the hindgut lumen of the Florida amphioxus (Branchiostoma floridae) in central west Florida. About three‐quarters of the adult amphioxus are parasitized. On average, each adult amphioxus hosts about five tapeworm larvae. The residence time of the parasites in the amphioxus gut appears to be in the order of several months, which is considerably shorter than the potential lifetime of the host. The living larvae range in length (when fully extended) from 300 to 850 µm and are approximately cone‐shaped, tapering to a point posteriorly and bearing a single large sucker anteriorly. Toward the anterior end of the body are four hookless bothridia, each indented by three loculi plus an inconspicuous accessory sucker. The larvae initiate the early stages of hook formation when they are cultured for a few days in urea‐saline (mimicking the gut fluid of the definitive host, which is an elasmobranch). The tapeworm larvae are identifiable to genus and species on the basis of correspondences between their nuclear ribosomal DNA genes and those of adult specimens of Acanthobothrium brevissime recovered from the spiral valve of a stingray from the same environment.  相似文献   

7.
《Gene》1999,227(1):1-10
We previously described the cDNA cloning and expression patterns of actin genes from amphioxus Branchiostoma floridae (Kusakabe, R., Kusakabe, T., Satoh, N., Holland, N.D., Holland, L.Z., 1997. Differential gene expression and intracellular mRNA localization of amphioxus actin isoforms throughout development: implications for conserved mechanisms of chordate development. Dev. Genes Evol. 207, 203–215). In the present paper, we report the characterization of cDNA clones for actin genes from a closely related species, Branchiostoma belcheri, and the exon–intron organization of B. floridae actin genes. Each of these two amphioxus species has two types of actin genes, muscle and cytoplasmic. The coding and non-coding regions of each type are well-conserved between the two species. A comparison of nucleotide sequences of muscle actin genes between the two species suggests that a gene conversion may have occurred between two B. floridae muscle actin genes BfMA1 and BfMA2. From the conserved positions of introns between actin genes of amphioxus and those of other deuterostomes, the evolution of deuterostome actin genes can be inferred. Thus, the presence of an intron at codon 328/329 in vertebrate muscle and cytoplasmic actin genes but not in any known actin gene in other deuterostomes suggests that a gene conversion may have occurred between muscle and cytoplasmic actin genes during the early evolution of the vertebrates after separation from other deuterostomes. A Southern blot analysis of genomic DNA revealed that the amphioxus genome contains multiple muscle and cytoplasmic actin genes. Some of these actin genes seem to have arisen from recent duplication and gene conversion. Our findings suggest that the multiple genes encoding muscle and cytoplasmic actin isoforms arose independently in each of the three chordate lineages and that gene duplications and gene conversions established the extant actin multigene family during the evolution of chordates.  相似文献   

8.
9.
An amphioxus Msx gene expressed predominantly in the dorsal neural tube   总被引:2,自引:0,他引:2  
 Genomic and cDNA clones of an Msx class homeobox gene were isolated from amphioxus (Branchiostoma floridae). The gene, AmphiMsx, is expressed in the neural plate from late gastrulation; in later embryos it is expressed in dorsal cells of the neural tube, excluding anterior and posterior regions, in an irregular reiterated pattern. There is transient expression in dorsal cells within somites, reminiscent of migrating neural crest cells of vertebrates. In larvae, mRNA is detected in two patches of anterior ectoderm proposed to be placodes. Evolutionary analyses show there is little phylogenetic information in Msx protein sequences; however, it is likely that duplication of Msx genes occurred in the vertebrate lineage. Received: 12 October 1998 / Accepted: 26 December 1998  相似文献   

10.

Background  

Members of the green fluorescent protein (GFP) family share sequence similarity and the 11-stranded β-barrel fold. Fluorescence or bright coloration, observed in many members of this family, is enabled by the intrinsic properties of the polypeptide chain itself, without the requirement for cofactors. Amino acid sequence of fluorescent proteins can be altered by genetic engineering to produce variants with different spectral properties, suitable for direct visualization of molecular and cellular processes. Naturally occurring GFP-like proteins include fluorescent proteins from cnidarians of the Hydrozoa and Anthozoa classes, and from copepods of the Pontellidae family, as well as non-fluorescent proteins from Anthozoa. Recently, an mRNA encoding a fluorescent GFP-like protein AmphiGFP, related to GFP from Pontellidae, has been isolated from the lancelet Branchiostoma floridae, a cephalochordate (Deheyn et al., Biol Bull, 2007 213:95).  相似文献   

11.
It was previously discovered that tail fin rays of larval amphioxus are long ciliary rootlets in posterior epidermal cells. This work describes the heretofore unknown origin and fate of these organelles in the Florida amphioxus (Branchiostoma floridae). In late embryos, epidermal cells at the posterior end of the body increase in height, thus producing a tail fin. One ciliary rootlet in each cell elongates and also rotates through about 90°, soon becoming oriented parallel to the long axis of the cell and running continuously from the apical to the basal plasma membrane. During the subsequent growth of the larval tail, the rootlets and epidermal cells housing them reach lengths up to 120 μm. At metamorphosis, the rootlets become vacuolated and rapidly decrease in length along with the height of the tail epidermis. Contemporaneously, abundant extracellular dermal matrix accumulates in the sagittal plane of the body to produce a predominantly dermal tail fin. Throughout postmetamorphic life, the posterior epidermal cells, now without ciliary rootlets, thinly cover a largely dermal tail flange. Thus, the specialized morphology of the amphioxus tail fin is generated by two different cellular mechanisms, involving different cell populations (ectodermal and mesodermal), at different life‐history stages.  相似文献   

12.

Background  

Regulation in protein networks often utilizes specialized domains that 'join' (or 'connect') the network through specific protein-protein interactions. The innate immune system, which provides a first and, in many species, the only line of defense against microbial and viral pathogens, is regulated in this way. Amphioxus (Branchiostoma floridae), whose genome was recently sequenced, occupies a unique position in the evolution of innate immunity, having diverged within the chordate lineage prior to the emergence of the adaptive immune system in vertebrates.  相似文献   

13.

Background

The caspase family, which plays a central role in apoptosis in metazoans, has undergone an expansion in amphioxus, increasing to 45 members through domain recombination and shuffling.

Results

In order to shed light on the conservation and uniqueness of this family in amphioxus, we cloned three representative caspase genes, designated as bbtCaspase-8, bbtCaspase-1/2 and bbtCaspase3-like, from the amphioxus Branchiostoma belcheri tsingtauense. We found that bbtCaspase-8 with conserved protein architecture is involved in the Fas-associated death domain-Caspase-8 mediated pro-apoptotic extrinsic pathway, while bbtCaspase3-like may mediate a nuclear apoptotic pathway in amphioxus. Also, bbtCaspase-1/2 can co-localize with bbtFADD2 in the nucleus, and be recruited to the cytoplasm by amphioxus apoptosis associated speck-like proteins containing a caspase recruitment domain, indicating that bbtCaspase-1/2 may serve as a switch between apoptosis and caspase-dependent innate immune response in invertebrates. Finally, amphioxus extrinsic apoptotic pathway related caspases played important roles in early embryogenesis.

Conclusions

Our study not only demonstrates the conservation of bbtCaspase-8 in apoptosis, but also reveals the unique features of several amphioxus caspases with novel domain architectures arose some 500 million years ago.  相似文献   

14.
Serotonin (5-hydroxytryptamine) is a biogenic amine distributed throughout the metazoans and has an old evolutionary history. It is involved as a developmental signal in the early morphogenesis of both invertebrates and vertebrates, whereas in adults it acts mainly as a neurotransmitter and gastrointestinal hormone. In vertebrates, serotonin regulates the morphogenesis of the central nervous system and the specification of serotonergic as well as dopaminergic neurons. The present study uses, as an experimental model, an invertebrate chordate, the lancelet Branchiostoma floridae, characterized by its remarkable homologies with vertebrates that allows the 'bauplan' of the probable ancestor of vertebrates to be outlined. In particular, the involvement of serotonin as a developmental signal in embryos and larvae, as well as a neurotransmitter and gastrointestinal hormone in adult specimens of Branchiostoma floridae, gives further support to a common origin of cephalocordates and vertebrates.  相似文献   

15.
The expression of four AmphiPax genes in 16 developmental stages and different organs in amphioxus (Branchiostoma belcheri) was investigated, finding those genes expressed throughout amphioxus life with temporal-specific (especially during embryogenesis and metamorphosis) and spatial-specific patterns. This study suggests that duplicated Pax genes in vertebrates might maintain most of their ancestral functions and also expand their expression patterns after the divergence of protochordates and vertebrates.  相似文献   

16.
17.
Possession of paired appendages is regarded as a novelty that defines crown gnathostomes and allows sophisticated behavioral and locomotive patterns. During embryonic development, initiation of limb buds in the lateral plate mesoderm involves several steps. First, the lateral plate mesoderm is regionalized into the cardiac mesoderm (CM) and the posterior lateral plate mesoderm (PLPM). Second, in the PLPM, Hox genes are expressed in a collinear manner to establish positional values along the anterior–posterior axis. The developing PLPM splits into somatic and splanchnic layers. In the presumptive limb field of the somatic layer, expression of limb initiation genes appears. To gain insight into the evolutionary sequence leading to the emergence of paired appendages in ancestral vertebrates, we examined the embryonic development of the ventral mesoderm in the cephalochordate amphioxus Branchiostoma floridae and of the lateral plate mesoderm in the agnathan lamprey Lethenteron japonicum, and studied the expression patterns of cognates of genes known to be expressed in these mesodermal layers during amniote development. We observed that, although the amphioxus ventral mesoderm posterior to the pharynx was not regionalized into CM and posterior ventral mesoderm, the lateral plate mesoderm of lampreys was regionalized into CM and PLPM, as in gnathostomes. We also found nested expression of two Hox genes (LjHox5i and LjHox6w) in the PLPM of lamprey embryos. However, histological examination showed that the PLPM of lampreys was not separated into somatic and splanchnic layers. These findings provide insight into the sequential evolutionary changes that occurred in the ancestral lateral plate mesoderm leading to the emergence of paired appendages.  相似文献   

18.
The present day structure of the vertebrate major histocompatibility complex (MHC) and its three paralogous regions has always been a focus of interest. In a recent study, nine human anchor genes located in the MHC region were cloned from a Branchiostoma floridae (amphioxus) cosmid library. The identification and analysis of 31 surrounding genes led to the most probable model of two rounds of en bloc duplication giving rise to these regions. These events were estimated to have occurred after the cephalochordata-craniata divergence [approximately 766 million years ago (Mya)] and before the Gnathostomata radiation (approximately 528 Mya). Furthermore, it was also shown that after this large-scale duplication one of these regions, corresponding to the human 9q33-q34, had retained an ancestral organisation. In the present study, four new cosmids in the amphioxus proto-MHC region were identified by the chromosomal walking technique. These cosmids were sequenced, and their structural annotation was performed, leading to the prediction of eleven genes. Their phylogenetic relationships among species corroborate the results obtained previously and provide more evidence for the plesiomorphic state of the human chromosome 9q33-34 MHC paralogous region.An erratum to this article can be found at  相似文献   

19.
Elastases have been identified in a variety of organisms ranging from bacteria to insects to mammals, yet little is known to date about them in amphioxus, a model animal for insights into the origin and evolution of vertebrates. In this study we demonstrate the presence of an elastase homologue, named BbElas, in Branchiostoma belcheri. The recombinant BbElas hydrolyses the elastase specific substrate N-succinyl-Ala-Ala-Ala p-nitroanilide, which can be inhibited by the serine proteinase inhibitor PMSF, the elastase-specific inhibitor elastatinal and the cysteine proteinase inhibitor PCMB. Phylogenetic analysis shows that BbElas represents the archetype of vertebrate elastases, hinting at the clues that the different isoforms of vertebrate elastases are originated from an ancestral gene like BbElas. Our results also suggest that the mid-gut in amphioxus is to homologous vertebrate pancreas, a novel proposal which deserves further study.  相似文献   

20.
Thyroid hormone (TH)/insulin-like growth factor (IGF) signaling pathway has been identified in all the vertebrates, but its evolutionary origin remains elusive. In this study we examined the expression profiles in vitro as well as in vivo of the IGF-I gene of fish Danio rerio (vertebrate) and the IGF-like gene (IGFl) of amphioxus Branchiostoma japonicum (protochordate) following T3 treatment. Our results showed that T3 was able to enhance hepatic IGF-I/IGFl gene expression in vitro in both zebrafish and amphioxus in a dose-dependent manner. This T3-induced hepatic expression of IGF-I/IGFl genes in both species was significantly inhibited by the T3-specific inhibitor DEA, indicating the specificity of IGF-I/IGFl gene regulation by T3. At 100 nM T3, in both the long (42 h) and short (8 h) time course experiments, the IGF-I/IGFl gene expression profiles following T3 treatment in the tissue cultures of both species exhibited closely similar pattern and trend. Moreover, exposure of zebrafish and amphioxus to T3in vivo for 72 h induced a significant increase in the expression of IGF-I/IGFl genes in both the liver and the hepatic caecum. These data together suggest that amphioxus and zebrafish both share a similar regulatory mechanism of IGF gene expression in response to T3, providing an evidence for the presence of a vertebrate-like TH/IGF signaling pathway in the protochordate amphioxus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号